High Frequency, High Temp, One-Output Clock Generator
The Smart Timing Choice
The Smart Timing Choice
Features
Applications
Frequencies between 115.194001 MHz to 137 MHz accurate to 6
decimal places
Operating temperature from -40°C to 125°C. For -55°C option, refer
to
SiT2020
and
SiT2021
Supply voltage of 1.8V or 2.5V to 3.3V
Excellent total frequency stability as low as ±20 ppm
Low power consumption of 5mA typical at 1.8V
LVCMOS/LVTTL compatible output
5-pin SOT23-5 package: 2.9mm x 2.8mm
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 clock generators, refer to
SiT2024
and
SiT2025
Industrial, medical, avionics and other high temperature applica-
tions
Industrial sensors, PLC, motor servo, outdoor networking
equipment, medical video cam, asset tracking systems, etc.
Electrical Specifications
Table 1. Electrical Characteristics
[1,2]
Parameters
Output Frequency Range
Symbol
f
Min.
115.194001
Typ.
–
Max.
137
Unit
MHz
Condition
Refer to
Table 14
for the exact list of supported frequencies
list of supported frequencies
Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C, and
variations over operating temperature, rated power supply
voltage and load (15 pF ± 10%).
Frequency Range
Frequency Stability and Aging
Frequency Stability
F_stab
-20
-25
-30
-50
Operating Temperature Range
(ambient)
T_use
-40
-40
Vdd
1.62
2.25
2.52
2.7
2.97
2.25
Current Consumption
Idd
–
–
–
OE Disable Current
Standby Current
I_od
I_std
–
–
–
–
–
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
45
–
–
–
Output High Voltage
VOH
90%
–
–
–
–
–
–
1.8
2.5
2.8
3.0
3.3
–
6.2
5.4
4.8
–
–
2.6
1.4
0.6
–
1.0
1.3
1.0
–
+20
+25
+30
+50
+105
+125
1.98
2.75
3.08
3.3
3.63
3.63
8
7
6
4.8
4.3
8.5
5.5
3.5
55
2.0
2.5
3
–
ppm
ppm
ppm
ppm
°C
°C
V
V
V
V
V
V
mA
mA
mA
mA
mA
A
A
A
%
ns
ns
ns
Vdd
No load condition, f = 125 MHz, Vdd = 2.8V, 3.0V or 3.3V
No load condition, f = 125 MHz, Vdd = 2.5V
No load condition, f = 125 MHz, Vdd = 1.8V
Vdd = 2.5V to 3.3V, OE = Low, output in high Z state.
Vdd = 1.8V, OE = Low, output in high Z state.
Vdd = 2.8V to 3.3V, ST = Low, Output is Weakly Pulled Down
Vdd = 2.5V, ST = Low, Output is Weakly Pulled Down
Vdd = 1.8V, ST = Low, Output is Weakly Pulled Down
All Vdds
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd = 1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V or 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V or 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Extended Industrial
Automotive
Operating Temperature Range
Supply Voltage and Current Consumption
Supply Voltage
LVCMOS Output Characteristics
Output Low Voltage
VOL
–
–
10%
Vdd
SiTime Corporation
Rev. 1.0
990 Almanor Avenue, Sunnyvale, CA 94085
(408) 328-4400
www.sitime.com
Revised October 16, 2014
SiT2019
High Frequency, High Temp, One-Output Clock Generator
The Smart Timing Choice
The Smart Timing Choice
Table 1. Electrical Characteristics
[1,2]
(continued)
Parameters
Input High Voltage
Input Low Voltage
Input Pull-up Impedence
Symbol
VIH
VIL
Z_in
Min.
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
Peak-to-peak Period Jitter
RMS Phase Jitter (random)
T_start
T_oe
T_resume
T_jitt
T_pk
T_phj
–
–
–
–
–
–
–
–
–
Typ.
–
–
87
–
–
–
–
1.6
1.8
12
14
0.5
1.3
Max.
–
30%
150
–
5
130
5
Jitter
2.5
3
20
30
0.8
2
ps
ps
ps
ps
ps
ps
f = 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 125 MHz, Vdd = 1.8V
f = 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 125 MHz, Vdd = 1.8V
f = 125 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 125 MHz, Integration bandwidth = 12 kHz to 20 MHz
Unit
Vdd
Vdd
k
M
ms
ns
ms
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
Pin 1, ST logic low
Measured from the time Vdd reaches 90% of final value
f = 115.194001 MHz. For other frequencies, T_oe = 100 ns + 3 *
clock periods
Measured from the time ST pin crosses 50% threshold
Condition
Input Characteristics
Startup and Resume Timing
Notes:
1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.
2. The typical value of any parameter in the Electrical Characteristics table is specified for the nominal value of the highest voltage option for that parameter and at
25 °C temperature.
Table 2. Pin Description
Pin
1
2
Symbol
GND
NC
Power
No Connect
Output
Enable
3
OE/ ST/NC
Standby
No Connect
4
5
VDD
OUT
Power
Output
Electrical ground
[3]
No connect
H
[4]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
H or Open
[4]
: specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open
[4]
: Specified frequency
output. Pin 3 has no function.
Power supply voltage
[3]
Oscillator output
4
5
Functionality
Top View
OE/ST/NC NC
3
2
GND
1
VDD
OUT
Notes:
3. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
4. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 3 is not externally driven.
If pin 3 needs to be left floating, use the NC option.
Figure 1. Pin Assignments
Rev. 1.0
Page 2 of 12
www.sitime.com
SiT2019
High Frequency, High Temp, One-Output Clock Generator
The Smart Timing Choice
The Smart Timing Choice
N
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the
IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
[5]
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Note:
5. Exceeding this temperature for extended period of time may damage the device.
Table 4. Thermal Consideration
[6]
Package
SOT23-5
JA
, 4 Layer Board
(°C/W)
421
JC
, Bottom
(°C/W)
175
Note:
6. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
Table 5. Maximum Operating Junction Temperature
[7]
Max Operating Temperature (ambient)
105°C
125°C
Maximum Operating Junction Temperature
115°C
135°C
Note:
7. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev. 1.0
Page 3 of 12
www.sitime.com
SiT2019
High Frequency, High Temp, One-Output Clock Generator
The Smart Timing Choice
The Smart Timing Choice
Test Circuit and Waveform
[8]
Test
Point
Vout
Vdd
Tr
5
4
0.1µF
Power
Supply
Tf
15pF
(including probe
and fixture
capacitance)
1
2
3
80% Vdd
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
1k
OE/ST Function
Figure 2. Test Circuit
Note:
8. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Output Waveform
Timing Diagrams
90% Vdd
Vdd
50% Vdd
Vdd
Pin 4 Voltage
T_start
No Glitch
during start up
[9]
ST Voltage
T_resume
CLK Output
CLK Output
T_start: Time to start from power-off
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ST Mode)
u
Figure 5. Standby Resume Timing (ST Mode Only)
Vdd
50% Vdd
OE Voltage
T_oe
OE Voltage
Vdd
50% Vdd
T_oe
CLK Output
CLK Output
HZ
T_oe: Time to re-enable the clock output
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Note:
9. SiT2019 has “no runt” pulses and “no glitch” output during startup or resume.
Figure 7. OE Disable Timing (OE Mode Only)
Rev. 1.0
Page 4 of 12
www.sitime.com
SiT2019
High Frequency, High Temp, One-Output Clock Generator
RISC-V is a typical three-operand, load-store RISC architecture, including three basic instruction sets and six extended instruction sets, as shown in Table 1, where RV32E is a subset of RV32I and is ...
AD-DC rectification, precision rectification:1. What are the differences between a rectifier bridge, four diode rectification, and op amp rectification?2. After rectification, why is the positive half...
In the development of MCU embedded systems, debugging is essential. For some developers who lack expensive debugging equipment, they need to find another way. Therefore, serial port debugging componen...
Bare metal systems and RTOS systemsToday's embedded systems are becoming more and more complex. They not only have certain computing requirements, but also require GUI to achieve human-computer intera...
We used multiple models of LOTO oscilloscopes, with bandwidths ranging from 20M to 100M , to measure passive and active crystal oscillators . We tested the waveforms of 12M, 15M , 24M, 48M, and 80M cr...
I bought Zhennan’s board and book, read Chapter 3 of the first volume, and did experiments.The main program is as follows:delay_init(); //±uart_init(9600);
ZNX_Board_Init(); //ZN-X ·°°VS1003_GPIO_Init...
The low-power design of embedded systems requires a comprehensive analysis of various factors and overall planning. At the beginning of the design, various factors are often mutually restricted and ...[Details]
1 Introduction
The drive test system is an important component of network coverage assessment, network optimization, and network KPI assessment. Different test equipment can be used according ...[Details]
LEDs are widely used in indicator lights, large billboards, scanners, fax machines, mobile phones, car lights, traffic lights, etc. due to their long life and low power consumption. However, in ter...[Details]
0 Introduction
A manipulator is a mechatronic automatic device that can simulate human arm movements and replace human hands to grasp, move workpieces or operate tools according to set pro...[Details]
STM8L has an on-chip EEPROM, which is often used to save parameters. In fact, the entire program storage area of STM8L can be used as EEPROM, but it is closed by default. The default EEPR...[Details]
With the support of the huge domestic market in mainland China, why is the mainland supply chain also moving out, even faster than Taiwan? Will they have the opportunity to take more iPhone orders? W...[Details]
As a common topology, the traditional single-phase bridge inverter has been widely used in many fields. However, the output inverter voltage amplitude of this topology must be lower than the input ...[Details]
The GPT-9800 series electronic safety tester combines high durability and safety protection design, and complies with the testing requirements of various electronic/electrical products or components ...[Details]
Overview of the ARM microprocessor instruction set
The ARM instruction set is of load/store type, which means that the instruction set can only process data in registers, and the processing r...[Details]
ChatGPT can be said to be one of the most successful artificial intelligence technologies currently. The massive amount of big data makes it almost omniscient, and its super high IQ and EQ also make ...[Details]
UV curing technology is a technology that uses short-wavelength ultraviolet rays to irradiate photocurable coatings to produce chemical reactions and bond components. Compared with ordinary thermal dr...[Details]
Siemens inverter MM440 alarm introduction The parameters of Siemens inverter MM440 can be set through the operation panel. At the same time, the operation panel can also display the parameter val...[Details]
How to use detector 1-2
As shown in the figure, the detector 2 has a delay circuit inside, which can widen the output pulse and provide a sufficiently wide reset pulse for the CPU. Th...[Details]
Sometimes a project needs to generate random numbers when the computer is turned on, and the software must have a random seed to generate random numbers. There are usually several ways to generate ra...[Details]
On October 16, the second Midea Visionary Conference was held in Shunde, Foshan. Academician of the Chinese Academy of Sciences and professor of Huazhong University of Science and Technology Ding Han,...[Details]