100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT8919
and
SiT8921
Low power consumption of 4.9 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
field programmable
oscillators
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
◼
Ideal for GPON/EPON, network switches, routers.
servers, embedded systems
Ideal for Ethernet, PCI-E, DDR, etc.
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
115
-20
-25
-50
Operating Temperature Range
T_use
-20
-40
Supply Voltage
Vdd
1.62
2.25
2.52
2.7
2.97
2.25
Current Consumption
Idd
–
–
–
OE Disable Current
Standby Current
I_OD
I_std
–
–
–
–
–
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
45
–
–
–
Output High Voltage
Output Low Voltage
VOH
VOL
90%
–
Typ.
–
–
–
–
–
–
1.8
2.5
2.8
3.0
3.3
–
6.2
5.5
4.9
–
–
2.6
1.4
0.6
–
1
1.3
0.8
–
–
Max.
137
+20
+25
+50
+70
+85
1.98
2.75
3.08
3.3
3.63
3.63
7.5
6.4
5.6
4.2
4.0
4.3
2.5
1.3
55
2
2.5
2
–
10%
Unit
MHz
ppm
ppm
ppm
°C
°C
V
V
V
V
V
V
mA
mA
mA
mA
mA
A
A
A
%
ns
ns
ns
Vdd
Vdd
No load condition, f = 125 MHz, Vdd = 2.8 V, 3.0 V, 3.3 V or
2.25 to 3.63 V
No load condition, f = 125 MHz, Vdd = 2.5 V
No load condition, f = 125 MHz, Vdd = 1.8 V
Vdd = 2.5 V to 3.3 V, OE = GND, Output in high-Z state
Vdd = 1.8 V, OE = GND, Output in high-Z state
ST = GND, Vdd = 2.8 V to 3.3 V, Output is weakly pulled down
ST = GND, Vdd = 2.5 V, Output is weakly pulled down
ST = GND, Vdd = 1.8 V, Output is weakly pulled down
All Vdds
Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V, 20% - 80%
Vdd =1.8 V, 20% - 80%
Vdd = 2.25 V - 3.63 V, 20% - 80%
IOH = -4 mA (Vdd = 3.0 V or 3.3 V)
IOL = 4 mA (Vdd = 3.0 V or 3.3 V)
Inclusive of Initial tolerance at 25°C, 1
st
year aging at 25°C,
and variations over operating temperature, rated power
supply voltage and load.
Condition
Frequency Range
Frequency Stability and Aging
Operating Temperature Range
Extended Commercial
Industrial
Contact SiTime
for 1.5 V support
Supply Voltage and Current Consumption
LVCMOS Output Characteristics
Rev 1.06
15 March 2021
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Table 1. Electrical Characteristics (continued)
Parameters
Symbol
Min.
Typ.
–
–
87
Max.
–
30%
150
Unit
Condition
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
T_start
T_oe
T_resume
T_jitt
–
–
–
–
–
Peak-to-peak Period Jitter
T_pk
–
–
RMS Phase Jitter (random)
T_phj
–
–
Vdd
Vdd
k
Pin 1, OE or ST
Pin 1, OE or ST
Pin 1, OE logic high or logic low, or ST logic high
–
–
Pin 1, ST logic low
M
Startup and Resume Timing
–
–
–
5
122
5
Jitter
1.9
1.8
12
14
0.5
1.3
3
4
25
30
0.9
2
ps
ps
ps
ps
ps
ps
f = 125 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V
f = 125 MHz, Vdd = 1.8 V
f = 125 MHz, Vdd = 2.5 V, 2.8 V, 3.0 V or 3.3 V
f = 125 MHz, Vdd = 1.8 V
Integration bandwidth = 900 kHz to 7.5 MHz
Integration bandwidth = 12 kHz to 20 MHz
ms
ns
ms
Measured from the time Vdd reaches its rated minimum value
f = 137 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
Measured from the time ST pin crosses 50% threshold
Table 2. Pin Description
Pin
Symbol
Output Enable
OE/ST /NC
̅ ̅̅
Functionality
H
[1]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
H
[1]
: specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open
[1]
: Specified frequency
output. Pin 1 has no function.
Electrical ground
Oscillator output
Power supply voltage
[2]
OE/ST /NC
̅ ̅̅
1
Top View
4
VDD
1
Standby
No Connect
2
3
4
GND
OUT
VDD
Power
Output
Power
GND
2
3
OUT
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
̅ ̅̅
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Rev 1.06
Page 2 of 18
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance
of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
[3]
Note:
3. Exceeding this temperature for extended period of time may damage the device.
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Table 4. Thermal Consideration
[4]
Package
7050
5032
3225
2520
2016
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Note:
4. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
70°C
85°C
Maximum Operating Junction Temperature
80°C
95°C
Note:
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.06
Page 3 of 18
www.sitime.com
SiT8009B
High Frequency, Low Power Oscillator
Test Circuit and Waveform
[6]
Vdd
Vout
Test Point
tr
4
Power
Supply
0.1 uF
1
2
3
15pF
(including probe
and fixture
capacitance)
tf
80% Vdd
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/ST Function
1 kΩ
Figure 2. Test Circuit
Note:
6. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
T_resume
Pin 4 Voltage
T_start
No Glitch
during start up
[7]
ST Voltage
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ ST̅ Mode)
̅ ̅
Figure 5. Standby Resume Timing ( ST̅ Mode Only)
̅ ̅
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Figure 7. OE Disable Timing (OE Mode Only)
Note:
7. SiT8009 has “no runt” pulses and “no glitch” output during startup or resume.
This article explains in detail the force control modbus communication method modbus-tcp, modbus-rtu modicon communication configuration steps, see the attachment download:...
In the latest update, the code size of neopixel was reduced and the fill() speed was optimized.drivers/neopixel: Reduce code size of driver.
drivers/neopixel: Optimize fill() for speed....
Interpretation of 5G modulation signals and continuous wave signalsAuthor: ETS Source: Breadboard
Power Density Assessment Using Near-Field Measurements of Electric and Magnetic Field Decoupling 5G Mo...
Wi-Fi wireless network technology has always been "favored" by all walks of life. Recently, the Wi-Fi Alliance released a forecast, according to which Wi-Fi users need to achieve more efficient, relia...
I just found out about the sensors these days. The advantage of the official flagship store is that they are authentic and not expensive. The price of the LIS25BA bone vibration sensor in the last pro...
littleshrimpST Sensors & Low Power Wireless Technology Forum
Gear Speed Measurement Using Differential Hall Devices[ Print ][ Return ]It is challenging to measure the speed of rotating bodies in harsh application environments such as automobiles. It is necessar...
DSP applications are becoming more and more widespread, and it is very important to correctly design the power circuit of DSP application systems. This article gives a dual power supply voltage suppl...[Details]
In high-frequency PWM switching converters, a reliable gate drive circuit must be designed to ensure that the power MOSFET works at high frequency, high voltage, and high current. A good driving ci...[Details]
Servo motors are very important drive devices in the field of modern industrial automation. They have the characteristics of high precision, high response speed, and high stability. However, in act...[Details]
Autonomous driving has been a hot topic in recent years and is considered to be the development trend of the automotive industry in the future. To achieve autonomous driving, many sensors are indispe...[Details]
LC oscillation arc extinguishing circuit
Figure LC oscillation arc extinguishing circuit
The circuit of LC oscillation arc extinguishing is shown in the figure . The capacitor has a voltage...[Details]
With the rapid development of power electronics technology, the extensive application of low-power devices and more stringent industry standard constraints, more and more attention is paid to the acc...[Details]
Combining DSP and MCU into a dual CPU processor platform can fully utilize DSP's processing capabilities for large-capacity data and complex algorithms, as well as the control capabilities of...[Details]
I also started to get in touch with single-chip microcomputers a few days ago, starting with the most classic and practical 8051. After reading books and materials for a few days, I found that th...[Details]
On September 28, Hubei Xingji Times Technology Co., Ltd. (hereinafter referred to as "Xingji Times"), founded by Li Shufu, Chairman of Geely Holding Group, signed a strategic cooperation agreemen...[Details]
The S51 download cable software Easy 51Pro v2.0 written by netizen Nie Zhongqiang is simple to make and easy to use. It has a fast download speed and good stability. Thanks to Nie Zhongqiang and ...[Details]
Just now! GalaxyCore's IPO on the Science and Technology Innovation Board was successfully approved On November 6, according to the results of the 98th review meeting of the Science and Technology In...[Details]
As the TWS (True wireless stereo) headset market continues to grow, users' demand for product experience has also upgraded from simple quick connections to higher standards. For example, as of this y...[Details]
First, turn the multimeter to the test diode end, touch one of the transistor pins with the red probe of the multimeter, and use the other probe of the multimeter to test the remaining pins until t...[Details]
A circuit with Atmega163 microprocessor as the core is designed to collect multiple physiological parameters of the human body in real time and transmit high-speed data, so as to form a human physi...[Details]