Further extensions of the CWR15 product are planned for later in 2009. A new case size will be added, and the voltage range will be
extended to 20 volts. Ratings of 100 µF at 4 volts to 10 µF at 20 volts will be included in this extension of the product line.
40
TBC Series
CWR15 MIL-PRF-55365/12
HOW TO ORDER
COTS-PLUS & MIL QPL (CWR15):
TBC L
Type
Case
Size
Established Reliability, COTS-Plus & Space Level
685
*
004
C
#
Packaging Inspection Level
S = Std.
B = Bulk
Conformance
R = 7" T&R
L = Group A
S = 13" T&R
M = MIL (JAN)
W = Waffle
CWR15
See page 5
for additional
packaging
options.
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
0 = N/A
B = 0.1%/1000 hrs.
0 = Fused Solder
90% conf.
Plated
9 = SRC9000
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
7 = Matte Sn
Z = Non-ER
(COTS-Plus only)
CWR15 P/N CROSS REFERENCE:
CWR15
Style
F
Voltage
Code
C = 4Vdc
D = 6Vdc
F = 10Vdc
C
Termination
Finish
H = Solder Plated
C = Hot Solder
Dipped
B = Gold Plated
685
Capacitance
Code
pF code:
1st two digits
represent
significant
figures 3rd digit
represents
number of zeros
to follow
*
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
See page 5 for
additional
packaging
options.
–
Product Level
Designator
Weibull
B = 0.1
C = 0.01
D = 0.001
L
Case Size
+
Surge Test
Option
A = +25°C after Weibull
B = -55°C & +85°C
after Weibull
C = -55°C & +85°C
before Weibull
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
00 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
See page 5
digit represents
025 = 25Vdc
for additional
multiplier
035 = 35Vdc
(number of
packaging
zeros to follow)
050 = 50Vdc
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
9 = SRC9000 0 = Fused Solder
B = 0.1%/1000 hrs.
90% conf.
Plated
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Rated Voltage: (V
R
)
Category Voltage: (V
C
)
Surge Voltage: (V
s
)
Temperature Range:
Unless otherwise specified, all technical
0.47 µF to 68 µF
±5%; ±10%; ±20%
4
6
10
15
2.7
4
7
10
5.2
8
13
20
3.4
5
8
13
-55°C to +125°C
data relate to an ambient temperature of 25°C
85°C:
125°C:
85°C:
125°C:
20
13
26
16
41
42
Power
-55ºC
(%)
12
12
12
12
15
23
9
12
12
12
12
15
15
23
9
9
9
9
9
12
12
12
12
15
9
RATING & PART NUMBER REFERENCE
25ºC
Dissipation
Ripple
A
W
(100kHz)
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.20
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.040
0.08
0.040
0.10
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.025
0.03
85ºC
Ripple
V
(100kHz)
0.45
0.47
0.47
0.47
0.47
0.18
0.45
0.45
0.47
0.47
0.47
0.44
0.44
0.36
0.49
0.45
0.45
0.45
0.45
0.47
0.47
0.47
0.47
0.44
0.70
125ºC
Ripple
V
(100kHz)
0.20
0.21
0.21
0.21
0.21
0.08
0.20
0.20
0.21
0.21
0.21
0.20
0.20
0.16
0.22
0.20
0.20
0.20
0.20
0.21
0.21
0.21
0.21
0.20
0.31
TBC Series
CWR15 MIL-PRF-55365/12
CWR15 P/N
AVX MIL & COTS-Plus P/N
CWR15CK685*^L+
CWR15CK106*^R+
CWR15CK156*^R+
CWR15CK226*^R+
CWR15CK336*^R+
CWR15CK686*^A+
CWR15DK335*^L+
CWR15DK475*^L+
CWR15DK685*^R+
CWR15DK106*^R+
CWR15DK156*^R+
CWR15DK226*^A+
CWR15DK336*^A+
CWR15DK476*^A+
CWR15FK474*^L+
CWR15FK684*^L+
CWR15FK105*^L+
CWR15FK155*^L+
CWR15FK225*^L+
CWR15FK335*^R+
CWR15FK475*^R+
CWR15FK685*^R+
CWR15FK106*^R+
CWR15FK156*^R+
CWR15JK474*^R+
TBC L 685 * 004 C
TBC R 106 * 004 C
TBC R 156 * 004 C
TBC R 226 * 004 C
TBC R 336 * 004 C
TBC A 686 * 004 C
TBC L 335 * 006 C
TBC L 475 * 006 C
TBC R 685 * 006 C
TBC R 106 * 006 C
TBC R 156 * 006 C
TBC A 226 * 006 C
TBC A 336 * 006 C
TBC A 476 * 006 C
TBC L 474 * 010 C
TBC L 684 * 010 C
TBC L 105 * 010 C
TBC L 155 * 010 C
TBC L 225 * 010 C
TBC R 335 * 010 C
TBC R 475 * 010 C
TBC R 685 * 010 C
TBC R 106 * 010 C
TBC A 156 * 010 C
TBC L 474 * 020 C
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
Parametric Specifications by Rating per MIL-PRF-55365/12
Cap
DC Rated ESR @
DCL max
DF Max
@ 120Hz Voltage 100kHz
+25ºC
+85ºC
+125ºC
+25ºC
+(85/125)ºC
µF
V
Ohms
AVX SRC9000 P/N
Case
(µA)
(µA)
(µA)
(%)
(%)
@ 25ºC @ +85ºC @ +25ºC
TBC L 685 * 004 C L @ 9 ^ + L
6.8
4
10
0.5
5
6
8
16
TBC R 106 * 004 C L @ 9 ^ ++ R
10
4
6
0.5
5
6
8
16
TBC R 156 * 004 C L @ 9 ^ ++ R
15
4
6
0.6
6
7
8
16
TBC R 226 * 004 C L @ 9 ^ + R
22
4
6
0.9
9
11
8
16
TBC R 336 * 004 C L @ 9 ^ + R
33
4
6
1.3
13
16
10
20
TBC A 686 * 004 C L @ 9 ^ + A
68
4
1
2.7
27
33
15
30
TBC L 335 * 006 C L @ 9 ^ + L
3.3
6
10
0.5
5
6
6
12
TBC L 475 * 006 C L @ 9 ^ + L
4.7
6
10
0.5
5
6
8
16
TBC R 477 * 685 C L @ 9 ^ ++ R
6.8
6
6
0.5
5
6
8
16
TBC R 478 * 106 C L @ 9 ^ ++ R
10
6
6
0.6
6
7
8
16
TBC R 156 * 006 C L @ 9 ^ + R
15
6
6
0.9
9
11
8
16
TBC A 226 * 006 C L @ 9 ^ + A
22
6
6
1.4
14
17
10
20
TBC A 336 * 006 C L @ 9 ^ + A
33
6
6
2
20
24
10
20
TBC A 476 * 006 C L @ 9 ^ + A
47
6
4
2.8
28
34
15
30
TBC L 474 * 010 C L @ 9 ^ + L
0.47
10
12
0.5
5
6
6
12
TBC L 684 * 010 C L @ 9 ^ + L
0.68
10
10
0.5
5
6
6
12
TBC L 105 * 010 C L @ 9 ^ + L
1
10
10
0.5
5
6
6
12
TBC L 155 * 010 C L @ 9 ^ + L
1.5
10
10
0.5
5
6
6
12
TBC L 225 * 010 C L @ 9 ^ + L
2.2
10
10
0.5
5
6
6
12
TBC R 335 * 010 C L @ 9 ^ + R
3.3
10
6
0.5
5
6
8
16
TBC R 475 * 010 C L @ 9 ^ + R
4.7
10
6
0.5
5
6
8
16
TBC R 685 * 010 C L @ 9 ^ + R
6.8
10
6
0.7
7
8.5
8
16
TBC R 106 * 010 C L @ 9 ^ + R
10
10
6
1
10
12
8
16
TBC A 156 * 010 C L @ 9 ^ + A
15
10
6
1.5
15
18
10
20
TBC L 474 * 020 C L @ 9 ^ + L
0.47
20
24
0.5
5
6
6
12
Typical Ripple Data by Rating
85ºC
125ºC
25ºC
Ripple
Ripple
Ripple
A
A
V
(100kHz) (100kHz) (100kHz)
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.18
0.08
0.20
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.07
0.03
0.49
0.09
0.04
0.40
0.04
0.02
0.55
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.03
0.01
0.77
All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.
Established Reliability, COTS-Plus & Space Level
NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.
TBC Series
TBC COTS-Plus
TBC COTS-Plus series extends the
range of CWR15. TBC is available
with Weibull grade “B” reliability and
all MIL-PRF-55365 surge test
options (“A”, “B” & “C”).
For Space Level applications, AVX
SRC9000 ratings are available as
shown in the rating table.
There are four termination finishes
available: solder plated, fused sol-
der plated, hot solder dipped and
gold plated (these correspond to
“H”, “K”, “C” and “B” termination,
respectively, per MIL-PRF 55365).
CASE DIMENSIONS:
millimeters (inches)
L
Code
EIA
Code
EIA
Metric
Length (L)
3.20 ±0.20
(0.126 ±0.008)
3.50
+0.20
-0.20
(0.138
-0.008
)
+0.008
+0.20
+0.008
-0.000
)
+0.20
-0.00
+0.008
-0.000
)
+0.20
-0.00
+0.008
-0.000
)
Width (W)
Height (H)
Termination
Spacing(S)
1.80 min.
(0.071 min.)
2.00 min.
0.40 min.
(0.016 min.)
0.55 min.
(0.022 min.)
0.70 min.
(0.027 min.)
Minimum
Termination
Length (Lt)
0.15
(0.006)
0.15 min.
0.10
(0.004)
0.15
(0.006)
0.15
(0.006)
Average
Mass
44.6mg
%
A
POLARITY BAND NOT TO
EXCEED CENTER LINE
1206 3216-18
1.60 ±0.20
1.60 ±0.20
(0.063 ±0.008) (0.063 ±0.008)
2.80
-0.10
+0.20
+0.008
B
1210 3528-15
1.50 max.
0.50
-0.00
+0.20
90.0mg
(0.110
-0.004
)
0.50
-0.00
(0.020
0.85
(0.033
1.35
(0.053
+0.20
+0.008
+0.008
-0.000
) (0.020
-0.000
)
+0.15
+0.15
0.85
-0.00
-0.00
+0.006
+0.006
-0.000
) (0.033
-0.000
)
+0.15
+0.15
1.35
-0.00
-0.00
+0.006
+0.006
-0.000
) (0.053
-0.000
)
H
S
Lt
W
%
K
0402 1005-07
L
0603 1608-10
1.00
-0.00
(0.039
1.60
(0.063
2.0mg
8.6mg
%
R
0805 2012-15
2.00
(0.079
29.9mg
CAPACITANCE AND RATED VOLTAGE, V
R
(VOLTAGE CODE) RANGE
(LETTER DENOTES CASE SIZE)
Capacitance
µF
Code
0.33
0.47
0.68
1.0
1.5
2.2
3.3
4.7
6.8
10
15
22
33
47
68
334
474
684
105
155
225
335
475
685
106
156
226
336
476
686
3V
4V
Voltage Rating DC (V
R
) at 85°C
6V
10V
16V
K/L
L
L
L
L
L/R
L/R
R
R
A
L
L
L
L
20V
L
25V
L
K
R
R
R
R
R
R
A
L
R
R
R/A
A
A
R
R
R
43
TBC Series
TBC COTS-Plus
HOW TO ORDER
COTS-PLUS:
TBC L
Type
Case
Size
685
*
004
C
#
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Packaging Inspection Level
S = Std.
Level
Weibull:
H = Solder Plated
B = Bulk
Conformance B = 0.1%/1000 hrs.
0 = N/A
0 = Fused Solder
R = 7" T&R
90% conf.
Plated
S = 13" T&R L = Group A
9 = SRC9000
C = 0.01%/1000 hrs.
8 = Hot Solder
W = Waffle
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
See page 5
90% conf.
7 = Matte Sn
for additional
Z = Non-ER
(COTS-Plus only)
packaging
options.
None required
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
00 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
015 = 15Vdc
figures 3rd
020 = 20Vdc
See page 5
digit represents
025 = 25Vdc
for additional
multiplier
035 = 35Vdc
(number of
packaging
zeros to follow)
050 = 50Vdc
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
H = Solder Plated
9 = SRC9000 0 = Fused Solder
B = 0.1%/1000 hrs.
90% conf.
Plated
C = 0.01%/1000 hrs.
8 = Hot Solder
90% conf.
Dipped
D = 0.001%/1000 hrs.
9 = Gold Plated
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Leakage Current DCL:
Rated Voltage (V
R
)
Category Voltage (V
C
)
Surge Voltage (V
S
)
Surge Voltage (V
S
)
Temperature Range:
All technical data relate to an ambient temperature of +25°C
This is an introductory guide on how to get started with a project involving I2C communication using the ultra-low-power MSP microcontrollers (MCUs):
Introduction
I2C (or I2C, Integrated Circuit Bus) ...
Application Example : Timer using TOPWAY Smart LCD (HMT050CC-C)
Step 1: Create a project
Step 2 Create a page
Step 3 Set the page background image
①Click the work area , and the page properties will b...
Due to cost reasons, the cost of replacing a 0.5W carbon film resistor is only half of the original one, 2.7 cents each. I wonder if this thing is mature or not? Are there any risks?...
Shenzhou Loongson is China's first self-controlled high-end general-purpose CPU R&D and industrialization company. It is the operating entity after the reorganization of Beijing Shenzhou Loongson Int...[Details]
The purpose of uboot is to start the kernel, and the purpose of the kernel is to start the application, which is located on the root file system. 1. Use busybox to create a root file system Busyb...[Details]
At the beginning of this year, the Party Committee of State Grid Corporation of China, guided by Xi Jinping Thought on Socialism with Chinese Characteristics for a New Era, thoroughly implemented t...[Details]
The following takes stm8s103 as an example to introduce the interrupt settings in ST Visual Develop and IAR environments; the two environments are just different, but the interrupt vectors will not c...[Details]
Precision means that the calorimeter has good parallelism, but it does not mean good accuracy and good reproducibility. Good accuracy can ensure high precision and good reproducibility. Ambient tempe...[Details]
The most promising thin-film photovoltaic cells are amorphous silicon thin-film photovoltaic cells. Amorphous silicon materials are formed by vapor deposition. The method currently widely used is pla...[Details]
Today, the 2019 OPPO Developer Conference was held in Beijing. Duan Yaohui, Vice President of OPPO and President of the Internet Business Unit, revealed that the monthly active users of OPPO Quick Ap...[Details]
On the evening of December 16, Tsinghua Unigroup announced that it would clarify and make a statement on the recent false statements spread by the company's minority shareholder Jiankun Group and its...[Details]
InWheelSense™ is a multi-faceted power generation and sensing solution that can be installed on the wheels of a car, converting the force of the tire's rotation into piezoelectric power, and perfor...[Details]
Electromagnetic flowmeter has become one of the preferred flowmeters for liquid medium measurement in industrial enterprises. Because it works based on the principle of electromagnetic induction, as l...[Details]
A popular electric vehicle (EV) maker has been making headlines recently for its record-high stock price, with its stock price surging nearly 500% in 2020. While lockdowns and restrictions slowed the...[Details]
LED light display module The LED light display module is mainly composed of three-level LED lights during simulation. The P2.0, P2.1, and P2.2 ports are used to control the conduction and cutof...[Details]
According to foreign media reports, several US lawmakers have proposed a proposal to require mandatory installation of a child forgotten alarm system in all new cars. Currently, this technology exist...[Details]
On November 30, Wu Kai, chief scientist of CATL , announced that CATL’s smart skateboard chassis is expected to be mass-produced in the third quarter of 2024. It is reported that CATL’s smart skate...[Details]
OPPO and BYD signed a strategic cooperation agreement to explore new possibilities for the deep integration of mobile phones and automobiles.
The cooperation directions include in...[Details]