* Code C, MIL-C-22992, Left-Hand Thread. Connector designations depicted thus [ ] are for reference only and are not to be used in part number development.
BACKSHELL INTERFACE STANDARDS (See pages 15-17 for more information)
DESIG. SPEC.
SERIES
DESIG. SPEC.
SERIES
A
MIL-DTL-5015 MS3400
A
PATT 602
MIL-DTL-26482 2
B
MIL-DTL-5015 MS3100
AS81703
3
C
MIL-C-22992 MS173XX
MIL-DTL-83723 I & III
D
MIL-DTL-26482 1
40M39569
E
MIL-DTL-26500 Aluminum
DEF 5326-3
F
MIL-DTL-38999 I & II
EN 2997, 3646
40M38277
ESC 10, 11
PAN 6433-1
LN 29504
PATT 614
NFC93422 HE302
PATT 616
PAN 6432-1, -2
NFC93422
HE308, 9
DESIG. SPEC.
SERIES
G
MIL-C-28840
H
MIL-DTL-38999 III & IV
EN3645
J
MIL-C-81511 1, 2, 3 & 4
VG95329
K
MIL-DTL-83723 II
DESIG. SPEC.
L
EN3372
JN 1003
LN 29729
NFC93422
PAN 6433-2
PATT 615
VG 96912
S
PATT 105
PATT 603
PATT 608
SERIES
HE306
13
How
to Order
CONNECTOR DESIGNATOR
A THREAD*
REFERENCE
7/16 – 28 UNEF
M12 x 1 – 6H
1/2 – 20 UNF
1/2 – 28 UNEF
9/16 – 24 UNEF
M15 x 1 – 6H
5/8 – 24 UNEF
5/8 – 28 UN
11/16 – 24 UNEF
M18 x 1 – 6H
3/4 – 20 UNEF
13/16 – 20 UNEF
M22 x 1 – 6H
7/8 – 20 UNEF
7/8 – 28 UN
15/16 – 20 UNEF
M25 x 1 – 6H
1 – 20 UNEF
1 - 28 UN
1 1/16 – 18 UNEF
M28 x 1 – 6H
1 1/8 – 18 UNEF
1 1/8 – 28 UN
1 3/16 – 18 UNEF
M31 x 1 – 6H
1 1/4 – 18 UNEF
1 1.4 – 28 UN
1 5/16 – 18 UNEF
M34 x 1 - 6H
1 3/8 – 18 UNEF
1 3/8 – 28 UN
1 7/16 – 18 UNEF
M37 x 1 – 6H
1 1/2 – 18 UNEF
1 1/2 – 28 UN
1 9/16 – UNEF
1 5/8 – UNEF
1 3/4 – 18 UNS
1 7/8 – 16 UN
2 – 18 UNS
2 1/16 – 16 UNS
2 1/8 – 16 UN
2 1/4 – 16 UN
2 5/16 – 16 UNS
2 3/8 – 16 UN
2 1/2 – 16 UN
2 5/8 – 16 UN
2 3/4 – 16 UN
2 7/8 – 16 UN
3 – 16 UN
3 1/16 – 16 UN
B
DIA MAX
.590 (15.)
.650 (16.5)
.650 (16.5)
.650 (16.5)
.720 (18.3)
.770 (19.6)
.770 (19.6)
.770 (19.6)
.840 (21.3)
.890 (22.6)
.970 (24.6)
.970 (24.6)
1.030 (26.2)
1.090 (27.7)
1.030 (26.2)
1.090 (27.7)
1.150 (29.2)
1.220 (29.2)
1.150 (29.2)
1.220 (31.0)
1.280 (32.5)
1.340 (34.0)
1.280 (32.5)
1.340 (34.0)
1.410 (35.8)
1.470 (37.3)
1.410 (35.8)
1.470 (37.3
1.530 (38.9)
1.590 (40.4)
1.530 (38.9)
1.590 (40.4)
1.660 (42.2)
1.660 (42.2)
1.660 (42.2)
C
DIA MAX
.650 (16.5)
.770 (19.6)
.650 (16.5)
.770 (19.6)
.770 (19.6)
.820 (20.8)
.770 (19.6)
.890 (22.6)
.890 (22.6)
.940 (23.9)
.940 (23.9)
1.020 (29.2)
1.070 (26.2)
1.020 (25.9)
1.150 (29.2)
1.150 (29.2)
1.210 (30.7)
1.210 (30.7)
1.360 (34.5)
1.230 (31.2)
1.360 (34.5)
1.360 (34.5)
1.480 (37.6)
1.360 (34.5
1.480 (37.6)
1.530 (38.9)
1.600 (40.6)
1.480 (37.6)
1.600 (40.6)
D
DIA MAX
.770 (19.6)
E
DIA MAX
.690 (17.5)
.940 (24.8)
.690 (17.5)
How
to Order
GLENAIR
SYMBOL
A
B
C*
G*
J
LF
M
N
NC
NF
T
U
ZU**
ZN
*
**
W
N
A
M85049 SYMBOL
REFERENCE ONLY
FINISH
Cadmium Plate, Bright
Anodize, Black
Hard Coat, Anodic
Electroless Nickel
Cadmium Plate, Black
Cadmium Plate, Black
Anti-friction and thrust washers
Anti-rotation device
Reference Information
Standard Materials and Finishes
TABLE II - STANDARD FINISHES
SPECIFICATION(S)
AMS-QQ-P-416, Type I, Class 2
AMS-QQ-P-416, Type II, Class 3
AMS-A-8625, Type II, Class 2
AMS-A-8625, Type III, Class 1
Cadmium Plate, Olive Drab
Iridite, Gold Over Cadmium Plate Over MIL-C-5541, Class 3 AMS-QQ-P-416, Type II,
Electroless Nickel
Class 3 over AMS-C-26074, Class 4, Grade B
Cadmium Plate, Bright Over
Electroless Nickel
Cadmium Plate, Olive Drab Over
Electroless Nickel
Zinc Cobalt, Dark Olive Drab
Cadmium Plate, Olive Drab Over
Electroless Nickel
Cadmium Plate, Bright Over
Electroless Nickel
1000 Hour Corrosion Resistance
AMS-C-26074, Class 4, Grade B
AMS-QQ-P-416, Type II, Class 3 over Electroless Nickel
AMS-C-26074
96 Hour Corrosion Resistance
1000 Hour Corrosion Resistance
AMS-QQ-P-416, Type I, Class 3
ASTMB 733-90, SC2, Type I, Class 5, MIL-C-26074***
AMS-QQ-P-416, Type II, Class 3
AMS-QQ-P-416, Type II, Class 3
ASTMB 841-91, Over Electroless Nickel 1000 Hour Salt
Spray
Zinc-Nickel Alloy, Olive Drab
Anodize finish; not suitable for EMI Shielding or grounding applications.
Applicable to corrosion resisting steel backshells and accessories. Consult factory for other available finishes.
The following standard materials are used for the majority of Glenair
backshells and connector accessories. However, backshell compo-
nents are not limited to those items listed, but are representative of
the elements used in Glenair's general accessory products. Contact
Glenair for applicable specifications on items not listed below.
COMPONENT
Machined components: such as backshell bodies, fabricated elbows, protective covers,
rotatable couplers, dummy stowage receptacles, lock nuts, G-spring support rings,
EMI ground rings, grommet followers, etc.
Die cast components: such as angular backshells, strain relief backshells, strain relief
bodies, strain relief saddles, special EMI ground rings, etc.
Backshells or strain reliefs: available in optional corrosion resisting steel; and
hardware: such as screws, washers, rivets, wire rope, sash chain, band straps, etc.
Elastomeric seals: such as O-rings, cable jacket seals, grommets, etc.
STANDARD MATERIALS - BACKSHELLS AND ACCESSORIES
MATERIAL
Aluminum
Aluminum
SPECIFICATION
AMS-QQ-A-200
ASTMB221, 209
QQ-A-591
ASTMB85, 26
Corrosion Resisting Steel ASTMA582 (300 Series)
AMS-QQ-S-763
Silicone
A-A-59588
Fluorosilicone
MIL-DTL-25988
Fluoropolymer
TFE
Corrosion Resistant
N/A
Material
BODY STRAP
Glenair offers an optional stainless steel body strap for
attaching protective covers as illustrated. To specify body
strap, add suffix letter C to the end of the part number. For
example 360AS001M1610M6C.
NOTES
On all length callouts, tolerance is ± .060 unless otherwise
specified.
Unless otherwise specified, the following other dimensional
tolerances will apply:
.xx = ± .03 (0.8)
.xxx = ± .015 (0.4)
Lengths = ± .060 (1.52)
Angles = ± 5°
Metric dimensions (mm) are indicated in parentheses
2-56 Screw and Nut
NOTE: For your convenience these tables have been reproduced inside the back cover fold-out.
How to test wire length using LOTO oscilloscope TDR method?
TDR is time-domain reflectometer , which can measure the length of the wire by observing the waveform of the electrical signal reflected fro...
[i=s]This post was last edited by Aguilera on 2019-3-10 12:36[/i] [size=4]When you can compile a UART communication program that can realize communication on a standard MSC51 microcontroller, the prob...
Live broadcast time: October 20 (Thursday) 10:00-11:30 am
Live Topic: TE Connectivity's Smart Building Solutions - Sensing and Connectivity, the Key to Smart Building DesignWatch LiveLive Broadcast In...
[i=s]This post was last edited by eagler8 on 2022-7-9 04:56[/i]The hardware used in the experiment and the software platform used Arduino IDE (see "【Hua Diao Experience】15 Try to build the Arduino dev...
Author: Huang Gang, a member of Yibo Technology Expressway MediaPCB engineer: "There are no more layers to go. These pairs of 10G signals need to change layers several times and make four vias before ...
This application note describes a simple, low-cost method for adding a sync signal to the green channel of a standard definition video signal.
In some video applications, the signal source output...[Details]
When we talk about autonomous driving , we are not talking about an independent individual, but a complete set of technology matrix. In this technology matrix, in addition to radar sensors and algo...[Details]
When it comes to laser, we are all familiar with it. It is another major invention in the 20th century after nuclear energy, semiconductors and computers. With its good characteristics such as high...[Details]
There are many bad ideas in physics, but one has persisted the longest: the perpetual motion machine. No perpetual motion machine has ever been experimentally proven to work, and they all break the...[Details]
First of all, let's talk about the 19264 screen The 1926 screen is composed of 3 64*64 pixels, 64 rows and 192 columns, where 192 columns are 64+64+64 = 192. They have CS1 CS2 CS3 controls to let...[Details]
1 Introduction In the design and debugging process of automatic control systems, sine waves, triangle waves and square waves of different frequencies are often used as signal sources, and their app...[Details]
China's intelligent warehousing and logistics industry is in a period of rapid development. The software, hardware and equipment are deeply integrated. Through
digital
technology, the tradi...[Details]
For Apple, it is very important to balance sales and profits. According to foreign media reports, in order to expand the user base of its service business, Apple has begun to sell iPhones at lower ...[Details]
New Challenges Facing Modern Military Test Systems
With the development of modern science and technology, the speed of updating of weapons and equipment in military systems has accelerated, th...[Details]
Freescale's MPC5676R is a 32-bit multi-core Qorivva MCU using
Power
Architecture technology, mainly used in automotive powertrain systems. MPC5676R integrates two 180MHz
processors
, three s...[Details]
1. Extended keywords: used to control data and pointers __eeprom is used for EEPROM storage space, controls data storage, controls pointer type and storage __tinyflash, __flash, __farflash, __hugefl...[Details]
1 Introduction In today's society, with the development of economy and the improvement of people's living standards, more and more people are obese, which has led to more and more diseases. Therefore...[Details]
At this stage, the two most shining keywords in the automobile industry are intelligence and low carbon. In the context of implementing dual carbon goals and industrial intelligence, automobiles ha...[Details]
At a technical forum a few days ago, TSMC, the world's largest foundry, announced its chip process roadmap, including five 3nm processes, and will launch a 2nm process in 2025, using GAA transistor t...[Details]
Revenue and earnings exceeded expectations, and free cash flow increased 41% month-on-month
October 29, 2024 – ON Semiconductor (ONSEMI) announced its third quarter 2024 results, w...[Details]