Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Frac-N PLL Integer Value and Frac-N PLL Fraction MSW ................................................ 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
10 I
2
C Operation ........................................................................................................................................................................ 36
10.1. I
2
C protocol ............................................................................................................................................................... 36
10.2. I
2
C Timing Specification ............................................................................................................................................ 39
10.3. I
2
C Device Address Modes ....................................................................................................................................... 40
Dimensions and Patterns ........................................................................................................................................................... 47
Additional Information ................................................................................................................................................................ 48
Revision History ......................................................................................................................................................................... 49
Rev 1.00
Page 3 of 49
www.sitime.com
SiT3542
340 to 725 MHz Endura™ Series I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
F_1y
–
–
–
–
–
±1
–
–
–
+20
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
1
st
-year aging at 25°C
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
°C
°C
°C
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Rugged Characteristics
Acceleration (g) sensitivity,
Gamma Vector
Supply Voltage
F_g
–
–
0.1
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
ppb/g
Low sensitivity grade; total gamma over 3 axes; 15 Hz to
2 kHz; MIL-PRF-55310, computed per section 4.8.18.3.1
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
9.1
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
11.8
µs
Rev 1.00
Page 4 of 49
www.sitime.com
SiT3542
340 to 725 MHz Endura™ Series I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
Hall-effect vehicle speed sensor: Hall effect sensors (switches) are very special in automotive applications, mainly due to spatial conflicts around the transmission. Hall effect sensors are solid sen...
When designing a circuit that uses a voltage regulator chip to output voltage, I would like to ask you seniors how to design a peripheral protection circuit to prevent damage to the chip due to excess...
IntroductionThe quartz accelerometer is a high-precision acceleration sensor with a higher range and stability than MEM. It can be combined with various gyroscope systems to achieve high-precision att...
The power system of a PDA is one of the most important indicators related to the performance of the PDA , followed by the area and space occupied by the solution and the cost of implementation. For lo...
A new, simple, rough and easy-to-understand way (you can break the sentence here) to analyze the needs of an electronic product - load balancing link aggregator! 5G is coming. If you are still using 4...
Abstract: LTC1732 is a lithium-ion battery charging control integrated circuit chip launched by LINEAR TECHNOLOGY. It features battery insertion detection and automatic low-voltage battery charg...[Details]
Image courtesy of Rondo Energy.
A high-temperature energy storage project, claimed to be the first of its kind in the United States, has come online in California, using...[Details]
The three major A-share indices rose collectively today. The Shanghai Composite Index closed up 2.18%, regaining the 3,600-point mark and closing at 3,608.34 points, a new high in more than five year...[Details]
Siemens standardized programming, simulation and virtual commissioning application training PPT. There are many pictures, it is recommended to browse with WIFI!
...[Details]
Compared with lithium-ion batteries, lithium metal batteries have higher energy density, faster charging speed and lighter weight, but their commercial application has been limited, one of the main r...[Details]
Network Analyzer User Manual 1. Purpose This instruction manual is to standardize the operation of the vector network analyzer to avoid damage to the instrument caused by improper operation; it...[Details]
The progress of the times, the development of science, and the improvement of talent standards have put forward higher requirements for more and more people, which is one of the prerequisites for ev...[Details]
Germany's Sartorius Group is a world-renowned electronic balance manufacturer. In addition to using infrared and microwave heating methods to determine moisture content, the company has launched a met...[Details]
In embedded applications, the main reason for using RTOS is to improve system reliability, followed by improving development efficiency and shortening the development cycle. μC/OS-II is a priority-ba...[Details]
When using
an integrated voltage regulator
to form a linear voltage regulator, in order for the voltage regulator to work properly and meet the design indicators, it must be equi...[Details]
Engineers designing point-of-load systems for industrial, networking/communications, and the latest consumer applications must constantly ensure that there are many trade-offs in the design. Weighi...[Details]
Some netizens want to know what methods are used to test the reliability of the MCU system. Deng Hongjie pointed out: "When a MCU system is designed, there will be different test items and methods fo...[Details]
Many people may have been paying attention to
the
high-performance
chips
in the automotive industry
. The next step is to move towards the central chip for cabin-driver integration, ...[Details]