Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
2
10 I C Operation ........................................................................................................................................................................ 36
2
10.1. I C protocol ............................................................................................................................................................... 36
2
10.2. I C Timing Specification ............................................................................................................................................ 38
2
10.3. I C Device Address Modes ....................................................................................................................................... 39
Dimensions and Patterns ........................................................................................................................................................... 46
Additional Information ................................................................................................................................................................ 47
Revision History ......................................................................................................................................................................... 48
Rev 0.91
Page 3 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
+20
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
9.1
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
11.8
µs
Rev 0.91
Page 4 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
BK3432 SDK Development and Use Guide BK3432 SDK Development and Use GuideLow-power BLE4.2+3.0 dual-mode chip, suitable for electronic scales, POS machines, anti-lost devices, self-timers, remote contr...
I'm helping someone fix a device. This switch doesn't work. When I went there, they had already broken it. I don't know what kind of switch this is. Where can I buy an identical one? Otherwise, I'll h...
1. It is best not to run signal lines under the inductor, as they will be seriously interfered with, especially for the inductor used for DCDC. The DI/DT on the inductor is very large, which will gene...
I encountered some problems in calculating the voltage divider resistors for overvoltage and undervoltage when using ltc4368. I hope you can help me solve them: 1. SHDN pin. I saw that some pins are c...
The circuit shown in Figure 1 can detect the open circuit state of a small circuit breaker or a high-breakdown fuse in a high-reliability communication power supply. When the fault causes the...[Details]
introduction Employing state-of-the-art breakthrough technology, real-time spectrum analyzers now appear poised to seriously challenge traditional swept frequency analyzers and vector signal anal...[Details]
In high-power lighting applications such as streetlights, high-bay stadium lighting, and many others, the trend is toward solid-state lighting using LEDs as the light source. This is because of th...[Details]
Today, the world's communication technology is developing rapidly. With the rapid development of micro-electromechanical systems, system-on-chip, wireless communication and low-power embedded techn...[Details]
1 Introduction
Frequency source is the key to achieve high performance indicators of radar, communication, electronic countermeasure and electronic systems. The functions of many modern elec...[Details]
If solar cells could generate a higher voltage when exposed to sunlight, they would be more efficient and generate more electricity. For the past half century, scientists have known that ferroelect...[Details]
Shanghai Litao Wire Horizontal and Vertical Flame Tester UL758 Applicable to various wire and cable flame resistance tests. The flammability tester obtains the flame spread trend and flame spread spe...[Details]
With the advancement of technology, the way to unlock a car is also constantly changing. From the initial mechanical key unlocking to the current keyless entry, although it has greatly improved th...[Details]
1. It is imperative to develop the new energy vehicle industry As the global energy crisis becomes increasingly serious and the environmental pollution caused by automobile emissions has gradually re...[Details]
Friedrichshafen, Germany / Brussels, Belgium. ZF received the Innovation Award at the BusWorld for its CeTrax central electric drive system. The system helps buses for public transport operations to ...[Details]
According to news on December 7, Meta, OpenAI and Microsoft stated at AMD’s investor event on Wednesday local time that they will all use AMD’s latest artificial intelligence chip Instinct MI300X. Th...[Details]
The USART1 and USART6 of STM32F4 are both connected to the RCC_APB2Periph_USART1 clock. At 168MHZ, the APB2 main frequency of USART1 and USART6 is 84MHZ, and the APB1 main frequency of uart3 is 48MHZ...[Details]
0 Introduction
Since the early 1970s, the birth of microprocessors has promoted the rapid development and application of computer information technology. Data acquisition and processing is a combin...[Details]
News on the morning of February 22nd: There have been many rumors about AirPods 3rd generation, and some images from @我爱音响网 revealed its appearance. Although it is not 100% confirmed, this A...[Details]
The data types of C51 are divided into basic data types and combined data types, which are basically the same as the data types in standard C, but the char type is the same as the short type, and the...[Details]