Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
2
10 I C Operation ........................................................................................................................................................................ 36
2
10.1. I C protocol ............................................................................................................................................................... 36
2
10.2. I C Timing Specification ............................................................................................................................................ 38
2
10.3. I C Device Address Modes ....................................................................................................................................... 39
Dimensions and Patterns ........................................................................................................................................................... 46
Additional Information ................................................................................................................................................................ 47
Revision History ......................................................................................................................................................................... 48
Rev 0.91
Page 3 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
+20
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
9.1
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
11.8
µs
Rev 0.91
Page 4 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
Recently I saw that the big guys have started to make their own offline downloaders, so I added the offline download function to my USB downloader.Originally I wanted to do firmware updates based on t...
In a world where everything is connected, more and more electronic devices that can understand speech are coming into our sight. In devices such as smartphones, tablets and laptops with Siri or Cortan...
Welding of electronic componentsSoldering components with an electric soldering iron is a basic assembly process, which plays a key role in ensuring the quality of electronic products. Here are some k...
Is there anyone who is good at LED power supply? ? This is my first time to use LED lamps. Can anyone tell me about the isolated dimming signal and non-isolated dimming signal in 1-10V dimming signal?...
[i=s]This post was last edited by Yanda5zi on 2022-5-20 15:02[/i]I have received the BK7231N development board. The whole board is quite delicate and compact, with IC in the middle and pins on both si...
YS65F805 is an 8-bit MTP CMOS touch microcontroller. It has powerful performance and low power consumption. Standby current: 500nA at 2.5V. Working current: 500uA at 8MHz and 2.5V. 120uA at 31kHz and ...
1-3-2. Calculation of energy storage inductance of reverse series switching power supply The calculation method of the energy storage inductor of the reverse series switching power supply is basicall...[Details]
1. Ensure safety: The waterproof detection of the vehicle camera plays an important role in ensuring the safety of the vehicle. If the waterproof performance of the vehicle camera is insufficient, ...[Details]
Briefly introduce the principle of I2C bus:
IIC bus is a serial bus launched by PHLIPS. It is a high-performance serial bus with bus arbitration and high-speed and low-speed device synchroniz...[Details]
Modern information technology has brought revolutionary changes to sensor technology. The application of embedded technology has greatly improved signal processing technology and increased test accu...[Details]
introduction
DMAIC is a process improvement method consisting of five stages: define, measure, analyze, improve, and control. It is generally used to improve existing processes, including manu...[Details]
On January 20, 2022, Shenzhen Desay Battery Technology Co., Ltd. (hereinafter referred to as the "Company") signed the "Desay Battery Energy Storage Cell Project Park Entry Agreement" (hereinafter ...[Details]
Because the six-step commutation method has some shortcomings, the FOC algorithm has the characteristics of small torque fluctuation and fast dynamic response, which can make the motor rotate more ...[Details]
The highly anticipated 2024 Medtec China and International Medical Device Design and Manufacturing Technology Exhibition was grandly opened at the Shanghai World Expo Exhibition and Convention Ce...[Details]
According to information released by the China Passenger Car Association, in October this year, the retail sales of new energy passenger vehicles reached 321,000 units, a year-on-year increase of 141...[Details]
introduction
At present, the world has proposed several terrestrial digital television standards: such as Europe's DVB-T, the United States' ATSC, and Japan's ISDB-T, and they have all reached ...[Details]
Of all the test equipment that electronics engineers and technicians have at their disposal, the most useful is undoubtedly the oscilloscope. Oscilloscopes are powerful tools that allow electronics e...[Details]
Modern telecommunication systems have very high requirements for the quality of DC power supply voltage. The voltage is not allowed to be interrupted instantly, and its fluctuation, transient and nois...[Details]
I wonder if you have noticed that when driving a car, there are various blind spots that pose a threat to driving safety. Therefore, many safety configurations and automotive aftermarket products rel...[Details]
Bridge rectifier diodes VD1 and VD3 use red LEDs; VD2 and VD4 use green LEDs; VD7 and VD8 two-color LEDs are used to indicate the direction of current. Since the working current of the LED is ...[Details]