• Underwriters Laboratory Recognition under UL standard
for safety 497B: Isolated Loop Circuit Protection
• Glass passivated junction
• 600W peak pulse power capabililty with a 10/1000µs
waveform, repetition rate (duty cycle): 0.01%
• Excellent clamping capability
• Low incremental surge resistance
• Very fast response time
0.300 (7.6)
0.230 (5.8)
0.140 (3.6)
0.104 (2.6)
Dia.
1.0 (25.4)
min.
Case:
JEDEC DO-204AC molded plastic body over
passivated junction
Terminals:
Solder plated axial leads, solderable per MIL-
STD-750, Method 2026
High temp. soldering guaranteed:
265°C/10 seconds,
0.375” (9.5mm) lead length, 5lbs. (2.3 kg) tension
Polarity:
For unidirectional types the color band denotes
the cathode, which is positive with respect to the anode
under normal TVS operation
Mounting Position:
Any
Weight:
0.015 oz., 0.4 g
Flammability:
Epoxy is rated UL 94V-0
Packaging Codes – Options (Antistatic):
51 – 1K per Bulk box, 10K/carton
54 – 4K per 13" paper Reel
(52mm horiz. tape), 12K/carton
73 – 2K per horiz. tape & Ammo box, 20K/carton
Devices for Bidirectional Applications
For bi-directional devices, use suffix C or CA for types P6KE6.8 through types P6KE440 (e.g. P6KE6.8C, P6KE440CA).
Electrical characteristics apply in both directions.
Maximum Ratings and Characteristics
Parameter
T
A
=25
O
C unless otherwise noted.
Symbol
P
PPM
I
PPM
P
M(AV)
I
FSM
V
F
R
θJL
R
θJA
T
J
, T
STG
Value
600
See Next Table
5.0
100
3.5/5.0
20
75
–55 to +175
Unit
W
A
W
A
V
°C/W
°C/W
O
Peak power dissipation with a 10/1000µs waveform
(1)
(Fig. 1)
Peak pulse current wih a 10/1000µs waveform
(1)
Steady state power dissipation
at T
L
=75
O
C, lead lengths 0.375” (9.5mm)
(2)
Peak forward surge current, 8.3ms single half sine-wave
(3)
Maximum instantaneous forward voltage
at 50A for unidirectional only
(4)
Typical thermal resistance junction-to-lead
Typical thermal resistance junction-to-ambient
Operating junction and storage temperature range
C
Notes:
(1) Non-repetitive current pulse, per Fig.3 and derated above T
A
= 25°C per Fig. 2
(2) Mounted on copper pad area of 1.6 x 1.6” (40 x 40mm) per Fig. 5
(3) Measured on 8.3ms single half sine-wave or equivalent square wave, duty cycle = 4 per minute maximum
(4) V
F
= 3.5V for P6KE220(A) & below; V
F
= 5.0V for P6KE250(A) & above
Document Number 88369
09-Oct-02
www.vishay.com
1
P6KE Series
Vishay Semiconductors
formerly General Semiconductor
Electrical Characteristics
Ratings at 25°C ambient temperature unless otherwise specified.
Breakdown Voltage
V
(BR)
at I
T
(1)
(V)
Device Type
+P6KE6.8
+P6KE6.8A
+P6KE7.5
+P6KE7.5A
+P6KE8.2
+P6KE8.2A
+P6KE9.1
+P6KE9.1A
+P6KE10
+P6KE10A
+P6KE11
+P6KE11A
+P6KE12
+P6KE12A
+P6KE13
+P6KE13A
+P6KE15
+P6KE15A
+P6KE16
+P6KE16A
+P6KE18
+P6KE18A
+P6KE20
+P6KE20A
+P6KE22
+P6KE22A
+P6KE24
+P6KE24A
+P6KE27
+P6KE27A
+P6KE30
+P6KE30A
+P6KE33
+P6KE33A
+P6KE36
+P6KE36A
+P6KE39
+P6KE39A
+P6KE43
+P6KE43A
+P6KE47
+P6KE47A
+P6KE51
+P6KE51A
+P6KE56
+P6KE56A
+P6KE62
+P6KE62A
+P6KE68
+P6KE68A
+P6KE75
+P6KE75A
+P6KE82
Min
6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
64.6
67.5
71.3
73.8
Max
7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.6
58.8
68.2
65.1
74.8
71.4
82.5
78.8
90.2
Test
Current
I
T
(mA)
10
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1
66.4
Maximum
Reverse
Leakage
at V
WM
(3)
I
D
(µA)
1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Peak Pulse
Current
I
PPM
(2)
(A)
55.6
57.1
51.3
53.1
48.0
49.6
43.5
44.8
40.0
41.4
37.0
38.5
34.7
35.9
31.6
33.0
27.3
28.3
25.5
26.7
22.6
23.8
20.6
21.7
18.8
19.6
17.3
18.1
15.3
16.0
13.8
14.5
12.6
13.1
11.5
12.0
10.6
11.1
9.7
10.1
8.8
9.3
8.2
8.6
7.5
7.8
6.7
7.1
6.1
6.5
5.6
5.8
5.1
Maximum
Clamping
Voltage at
I
PPM
V
C
(V)
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
108
103
118
Maximum
Temperature
Coefficient
of V
(BR)
(% / °C)
0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.078
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105
0.105
+ Underwriters Laboratory Recognition for the classification of protectors (QVGQ2) under the UL standard for safety 497B and file number E136766
for both uni-directional and bi-directional devices
www.vishay.com
2
Document Number 88369
09-Oct-02
P6KE Series
Vishay Semiconductors
formerly General Semiconductor
Electrical Characteristics
Ratings at 25°C ambient temperature unless otherwise specified.
Breakdown Voltage
V
(BR)
at I
T
(1)
(V)
Device Type
+P6KE82A
+P6KE91
+P6KE91A
+P6KE100
+P6KE100A
+P6KE110
+P6KE110A
+P6KE120
+P6KE120A
+P6KE130
+P6KE130A
+P6KE150
+P6KE150A
+P6KE160
+P6KE160A
+P6KE170
+P6KE170A
+P6KE180
+P6KE180A
+P6KE200
+P6KE200A
+P6KE220
+P6KE220A
+P6KE250
+P6KE250A
+P6KE300
+P6KE300A
+P6KE350
+P6KE350A
+P6KE400
+P6KE400A
+P6KE440
+P6KE440A
P6KE480
P6KE480A
P6KE510
P6KE510A
P6KE540
P6KE540A
Min
77.9
81.9
86.5
90.0
95.0
99.0
105
108
114
117
124
135
143
144
152
153
162
162
171
180
190
198
209
225
237
270
285
315
333
360
380
396
418
432
456
459
485
486
513
Max
86.1
100
95.5
110
105
121
116
132
126
143
137
165
158
176
168
187
179
198
189
220
210
242
231
275
263
330
315
385
368
440
420
484
462
528
504
561
535
594
567
Test
Current
I
T
(mA)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Stand-off
Voltage
V
WM
(V)
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102
105
111
121
128
130
136
138
145
146
154
162
171
175
185
202
214
243
256
284
300
324
342
356
376
389
408
413
434
437
459
Maximum
Reverse
Leakage
at V
WM
I
D
(µA)
(3)
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Maximum
Peak Pulse
Current
I
PPM
(A)
(2)
5.3
4.6
4.8
4.2
4.4
3.8
3.9
3.5
3.6
3.2
3.4
2.8
2.9
2.6
2.7
2.5
2.6
2.3
2.4
2.1
2.2
1.7
1.8
1.7
1.7
1.4
1.4
1.2
1.2
1.0
1.1
0.95
1.0
0.88
0.91
0.82
0.86
0.78
0.81
Maximum
Clamping
Voltage at
I
PPM
V
C
(V)
113
131
125
144
137
158
152
173
165
187
179
215
207
230
219
244
234
258
246
287
274
344
328
360
344
430
414
504
482
574
548
631
602
686
658
729
698
772
740
Maximum
Temperature
Coefficient
of V
(BR)
(% / °C)
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
Notes:
(1)
Pulse test: t
p
≤
50ms
(2) Surge current waveform per Fig. 3 and derate per Fig. 2
(3) For bidirectional types with V
WM
of 10 volts and less, the I
D
limit is doubled
(4) All terms and symbols are consistent with ANSI/IEEE C62.35
+ Underwriters Laboratory Recognition for the classification of protectors (QVGQ2) under the UL standard for safety 497B and file number E136766
for both uni-directional and bi-directional devices
Description
This P6KE TVS series is a low cost commercial product for use in applications where large voltage transients can permanently damage voltage-sensitive components.
The P6KE series device types are designed in a small package size where power and space is a consideration. They are characterized by their high surge capability,
extremely fast response time, and low impedance, (R
on
). Because of the unpredictable nature of transients, and the variation of the impedance with respect to these
transients, impedance, per se, is not specified as a parametric value. However, a minimum voltage at low current conditions (BV) and a maximum clamping voltage (Vc) at
a maximum peak pulse current is specified.
In some instances, the thermal effect (see Vc Clamping Voltage) may be responsible for 50% to 70%. of the observed voltage differential when subjected to high current
pulses for several duty cycles, thus making a maximum impedance specification insignificant.
In case of a severe current overload or abnormal transient beyond the maximum ratings, the Transient Voltage Suppressor will initially fail 'short' thus tripping the system's
circuit breaker or fuse while protecting the entire circuit. Curves depicting clamping voltage vs. various current pulses are available from the factory. Extended
[i=s]This post was last edited by alan000345 on 2018-12-20 08:43[/i] Fast charging and wireless charging, Bluetooth, smart home and GaN are hot topics this year. Let's take a closer look at these topi...
Application of LOTO oscilloscope with VI curve tester in circuit board maintenance
The prices of VI curve testers on the market range from 2,000 yuan to 10,000 yuan. Most of them are inconvenient to c...
I am an electronics student who has just learned to draw boards. Then I learned that Jiali Chuang can make boards for 5 yuan, so I want to make a set of PCB playing cards. I am not very familiar with ...
I received the Silicon Labs BG22-EK4108A Bluetooth development board a few days ago. Unfortunately, I have been too busy recently and have not had time to arrange a review. I took advantage of the wee...
Learn programming standards from TI code!!!
In fact, it is quite important to understand the system clock system. The following is a brief summary of the key points of the application.
1. First of all...
The clock signal of the microcontroller is like the heart of the microcontroller. The clock frequency of the microcontroller determines the time it takes for the microcontroller to run an instructi...[Details]
According to the latest research from Counterpoint, the US sanctions on Huawei have restricted the production of HiSilicon chips, and Qualcomm has benefited from this. It is estimated that 41% of sma...[Details]
(Image source: Cepton official website) According to foreign media reports, Cepton Technologies has released the latest SORA series line scan lidar sensor SORA-P60, which is designed to provide ...[Details]
Friends who have worked on products all have experienced this: a design may seem simple, and the hardware design and code writing can be completed quickly, but there are more or less unexpected event...[Details]
Tesla Inc Chief Executive Elon Musk is turning to insurance as he seeks to lower costs for customers, something the company has so far struggled to achieve with its car pricing. Tesla said it plans...[Details]
1 Introduction The spherical shaft tip is an important part of a gyroscope. It is a typical tiny spherical part. Its size, shape and position accuracy and surface quality requirements are high, which...[Details]
STMicroelectronics launches 50W GaN power converter for energy-efficient consumer and industrial power supply designs
China, April 7, 2022 - STMicroelectronics' VIPerGaN5...[Details]
The variable frequency transformer characteristic comprehensive tester is an innovative CT and PT test instrument developed based on the traditional transformer volt-ampere characteristic ratio and...[Details]
In the measurement, the change of light signal must be converted into the change of electrical signal in order to make quantitative measurement. This device that uses the photoelectric effect to con...[Details]
SynQor® Releases Military-Grade DC Output Power Conditioner (MPC-1250) Compliant with MIL-STD-1275 • Direct connection to 28V power systems specified by MIL-STD-1275 • 28 Vdc isolated output 12...[Details]
In 1968, HP produced red LED lights (wavelength 660nm), and then yellow-green (wavelength 570nm), blue (wavelength 470nm) and pure green (wavelength 525nm) that can be used for display screens ap...[Details]
O Introduction Since the advent of MOSFET and IGBT, voltage-controlled power electronic devices, especially IGBT, are experiencing a rapid development process. The voltage of IGBT single module de...[Details]
The figure shows a DC millivolt meter composed of SF357 operational amplifier , which can make up for the shortcomings of general multimeters or ordinary meters in measuring DC millivolt signals. Th...[Details]
CAN (Controller Area Network) is a local area network technology used in automobile and industrial control systems. It has high reliability, real-time and flexibility. RS-485 is a serial communicat...[Details]