Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 30
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 30
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 31
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 32
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 33
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 34
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 35
2
10 I C Operation ........................................................................................................................................................................ 36
2
10.1. I C protocol ............................................................................................................................................................... 36
2
10.2. I C Timing Specification ............................................................................................................................................ 38
2
10.3. I C Device Address Modes ....................................................................................................................................... 39
Dimensions and Patterns ........................................................................................................................................................... 46
Additional Information ................................................................................................................................................................ 47
Revision History ......................................................................................................................................................................... 48
Rev 0.91
Page 3 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
340.000001
340.000001
Typ.
–
–
Max.
725.000000
500.000000
Unit
MHz
MHz
Condition
LVDS and LVPECL output driver, factory or user
programmable, accurate to 6 decimal places
HCSL output driver, factory or user programmable, accurate to
6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-20
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
+20
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
9.1
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
11.8
µs
Rev 0.91
Page 4 of 48
www.sitime.com
SiT3522
340 to 725 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.10
–
94
63
–
30
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B
T_jitt
–
0.22
0.075
0.23
0.09
1
0.260
0.085
0.325
0.095
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
89
67
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
340
530
50
1.375
50
460
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.060
0.21
0.070
1
0.255
0.070
0.320
0.80
1.6
ps
ps
ps
ps
ps
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 622.08 MHz, IEEE802.3-2005 10 GbE jitter mask
integration bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 622.08 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 622.08 MHz. See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
I heard that ADR1399 is an upgraded version of LM399 and its performance has been greatly improved. Can anyone who has used it share their experience?...
This application note introduces a solution to implement software energy metering based on the C2000 core and the on-chip 12-bit ADC. C2000 is a 32-bit high-performance real-time microcontroller produ...
I just started learning stm32 recently, using the STM32F103C8T6 core board
This is the schematic diagram. The swd is normal, and the USB data cable can automatically start the program successfully. Ho...
[i=s]This post was last edited by annysky2012 on 2021-1-21 15:56[/i]I haven't updated my learning progress for a few days because I've been busy solving problems. Based on my love and understanding of...
Hardware experts in the group, I want to ask if you have a sense of age crisis. Have you ever encountered situations where you are told that you are too old and the company doesn't want you?...
Some people may be confused by a bunch of theoretical knowledge when using an oscilloscope for the first time, and thus lose interest in learning. If we can first learn how to measure a simple signal...[Details]
1. Signal source classification From the perspective of classification, signal sources can be divided into the following categories Analog signal source: Generates single-tone signals and analog modu...[Details]
PL2586 is a new USB HUB chip from Wangjiu
The PL2586 is an innovation that integrates features that comply with the USB-IF "Battery Charging Specification Revision 1.2" to support fast chargin...[Details]
The schematic diagram of the wireless transmission circuit based on the nrfl2401 chip is as follows: During the experiment, both the sender and the receiver used the same circuit. The sender prog...[Details]
Abstract: Based on the research of the structure and working principle of the electric power steering system (EPS) and its controller (ECU), a control system based on the ARM S3C44B0X single-chip ...[Details]
Tesla has been working to improve vehicle efficiency as much as possible, and now the company is applying for a patent for a new "more efficient" temperature-controlled seat. Even though Tesla h...[Details]
The reference power supply has little to do with the power supply itself and its process, but its temperature characteristics are stable, and it is widely used in analog circuits. The temperature char...[Details]
Characteristics of various transmitters
Sensors and transmitters play a vital role in the field of instrumentation and industrial automation. Unlike sensors, transmitters can not only ...[Details]
Mouser Electronics, Inc., the leading distributor of electronic components and products focused on introducing new products and offering the widest selection of semiconductors and electronic componen...[Details]
Samsung has announced the prices of the Galaxy Note10 series in Taiwan. It is reported that the Samsung Galaxy Note10 series offers three versions in Taiwan: Galaxy Note10 256GB, Galaxy Note10+ 256GB...[Details]
On June 5, according to a report by Taiwan media Economic Daily, TSMC will invest NT$1 trillion (about RMB 226.9 billion) to expand its 2nm production capacity in Taichung, and is expected to build a...[Details]
The 13.98-meter solar houseboat designed and built by Weihai Zhongfu Xigang Boat Co., Ltd., a subsidiary of China National Building Materials Group Co., Ltd. (hereinafter referred to as China Natio...[Details]
The epidemic has hindered the global semiconductor supply chain, coupled with the US export restrictions on China and the explosion of market demand, causing the chip shortage crisis to continue to e...[Details]
The physical memory of S3C6410 is divided into two parts: Memory and Pheriperal, with address ranges of 0x0~0x6fffffff and 0x7fffffff~0xffffffff respectively. The system accesses the Memory space thro...[Details]
As the core of new energy electric vehicles, onboard batteries are directly related to vehicle life, mileage, vehicle economy, and safety, all of which depend on the performance of the battery mana...[Details]