Ordering Information .................................................................................................................................................................... 2
7.1. User Programming Interface ..................................................................................................................................... 19
7.2. Start-up output frequency and signaling types .......................................................................................................... 19
8.1. Any-frequency function ............................................................................................................................................. 20
9 I C/SPI Control Registers...................................................................................................................................................... 29
9.1. Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 29
9.2. Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 30
9.3. Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 31
9.4. Register Address: 0x03. Flac-N PLL Integer Value and Flac-N PLL Fraction MSW ................................................. 32
9.6. Register Address: 0x05. PostDiv, Driver Control ...................................................................................................... 33
9.7. Register Address: 0x06. mDriver, Driver Control ...................................................................................................... 34
2
10 I C Operation ........................................................................................................................................................................ 35
2
10.1. I C protocol ............................................................................................................................................................... 35
2
10.2. I C Timing Specification ............................................................................................................................................ 37
2
10.3. I C Device Address Modes ....................................................................................................................................... 38
Dimensions and Patterns ........................................................................................................................................................... 45
Additional Information ................................................................................................................................................................ 46
Revision History ......................................................................................................................................................................... 47
Rev 0.991
Page 3 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
1 Electrical Characteristics
PRELIMINARY
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Frequency Stability
Symbol
f
F_stab
Min.
1
-10
-20
-25
-50
First Year Aging
Operating Temperature Range
F_1y
T_use
–
-20
-40
-40
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
Duty Cycle
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
VIH
VIL
Z_in
DC
T_start
T_oe_hw
70%
–
–
45
–
–
Typ.
–
–
–
–
–
±1
–
–
–
3.3
3.0
2.8
2.5
–
–
100
–
–
–
Max.
340
+10
+20
+25
+50
–
+70
+85
+105
Supply Voltage
3.63
3.3
3.08
2.75
–
30%
–
55
3.0
3.8
V
V
V
V
Vdd
Vdd
kΩ
%
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
OE pin
OE pin
OE pin, logic high or logic low
Unit
MHz
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1 -year aging at 25°C
Extended Commercial
Industrial
Extended Industrial. Available only for I C operation, not SPI.
2
st
Condition
Factory or user programmable, accurate to 6 decimal places
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Frequency Range
Frequency Stability
Temperature Range
Input Characteristics – OE Pin
Output Characteristics
Startup and Output Enable/Disable Timing
T_oe_sw
–
–
6.5
µs
Rev 0.991
Page 4 of 47
www.sitime.com
SiT3521
1 to 340 MHz Elite™ I
2
C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
PRELIMINARY
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3V or 2.5V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
Hello everyone, I am now learning microcontrollers and have completed the fifth dual-machine communication serial port experiment. I found a problem. In the 51 microcontroller serial port mode 3, afte...
[i=s]This post was last edited by hotsauce1861 on 2019-12-31 08:49[/i] # Recommend a fast source code style conversion tool AStyle Have you ever had a headache because of the messy code style in a pro...
[size=4]Let me first introduce WiFi 6. One word is not enough, let me explain it with two pictures[/size] [align=center] [/align][align=center] [align=left][size=4]There is really no need to say more ...
In this circuit, the diode will be turned on regardless of the transformer signal in the first half or the second half, and no signal should be output to the op amp....
In the past, T&M OEMs designed instruments to complete the test process according to a certain standard. As a result, they had to redesign their products when a new or revised standard was releas...[Details]
On August 29, the Zhangjiakou Mingyang Chabei Alibaba Data Center Source-Network-Load-Storage Integration Project held a groundbreaking ceremony in the Chabei Management District. The total investment...[Details]
Siemens commonly used PLC instruction table
Calculates the time difference between the current time and the time provided by IN and stores the time difference in ouT. The maximum time interval...[Details]
On March 16, the 9th AUBO Intelligent Technology Partner Conference 2024 was grandly held in Changzhou. This partner conference was jointly held by AUBO Intelligent and Siemens (China) for the firs...[Details]
introduction
At present, various communication methods are widely used in electrical automation control devices to complete the information transmission between the upper and lower controllers...[Details]
Overview
:
At present, when explaining the fast Fourier transform (FFT), the textbooks on digital signal processing in China all focus on complex FFT, an...[Details]
Generally, can microcontrollers, DSPs, and FPGAs be directly connected? Generally, the same voltage is OK, but it is best to check the values of VIL, VIH, VOL, and VOH in the technical manual ...[Details]
TDK has recently launched the new B43707* and B43727* series of EPCOS aluminum electrolytic capacitors in screw format. The rated operating voltage of the new series of capacitors is 400 V DC to 450 ...[Details]
China Mobile Multimedia Broadcasting (CMMB) is a mobile multimedia broadcasting standard independently developed by China with completely independent intellectual property rights. At present, the C...[Details]
The competition in the intelligent driving market in 2024 is already in a convergence phase, but there are still new giants entering this extremely involutionary track. They are AI platform compani...[Details]
The autonomous driving industry is developing rapidly, but the establishment of a regulatory system is somewhat slow, which is roughly similar between China and the United States. Recently, U.S. Secr...[Details]
Hello everyone, we have talked about NPN sensors and PNP sensors many times before.
What is the difference between these two sensors?
PNP sensor is also called "source input", the c...[Details]
On June 13, Argentina's anti-dumping investigation against Chinese small household fans came to an end. On the same day, the Argentine Undersecretary of State for Trade Policy and Management announ...[Details]
Although the oscilloscope is not the instrument with the highest hardware requirements, given that the oscilloscope is the single instrument most familiar to many engineers and the largest in the tes...[Details]
On October 23, we learned from the official that Ideal Intelligent Driving "end-to-end + VLM" has officially started full push, including all models under the AD MAX platform. The new generation of...[Details]