Vectron’s VCC6 Crystal Oscillator is a quartz stabilized, differential output oscillator, operating off either a 2.5 or 3.3 volt supply,
hermetically sealed 5x7 ceramic package.
Features
•
•
•
•
•
•
•
Ultra Low Jitter Performance, Fundamental or 3rd OT Crystal Design
Output Frequencies to 275.000MHz
0.3 ps typical RMS jitter, 12k-20MHz
Differential Output
Enable/Disable
-10/70°C, -40/85°C or -55/125°C Operation
Hermetically Sealed 5x7 Ceramic Package
•
•
•
•
•
•
•
•
•
•
Applications
Ethernet, GbE, Synchronous Ethernet
Fiber Channel
Enterprise Servers
Telecom
Clock source for A/D’s, D/A’s
Driving FPGA’s
Test and Measurement
PON
Medical
COTS
• Product is compliant to RoHS directive
and fully compatible with lead free assembly
Block Diagram
Complementary
Output
Output
V
DD
Crystal
Oscillator
E/D or NC
E/D or NC
Gnd
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
Page1
Performance Specifications
Table 1. Electrical Performance, LVPECL Option
Parameter
Voltage
1
Current (No Load)
Nominal Frequency
2
Stability
2,3
(Ordering Option)
Outputs
Output Logic Levels
4
, -10/70°C
Output Logic High
Output Logic Low
Output Logic Levels
4
, -40/85°C
Output Logic High
Output Logic Low
Output Rise and Fall Time
4
Load
Duty Cycle
5
Jitter (12 kHz - 20 MHz BW)155.52MHz
6
Period Jitter
7
RMS
P/P
Random Jitter
Deterministic Jitter
Output Enabled
8
Output Disabled
Disable Time
Enable/Disable Leakage Current
Enable Pull-Up Resistor
Output Enabled
Output Disabled
Start-Up Time
Operating Temp. (Ordering Option)
t
SU
T
OP
-10/70 or -40/85
33
1
10
фJ
фJ
45
V
OH
V
OL
V
OH
V
OL
t
R
/t
F
50 ohms into V
DD
-1.3V
50
0.3
2.3
20
2.4
0
Enable/Disable
V
IH
V
IL
t
D
0.7*V
DD
0.3*V
DD
200
±200
V
V
ns
uA
KOhm
MOhm
ms
°C
55
0.7
%
ps
ps
ps
ps
ps
V
DD
-1.025
V
DD
-1.810
V
DD
-1.085
V
DD
-1.830
V
DD
-0.880
V
DD
-1.620
V
DD
-0.880
V
DD
-1.555
600
V
V
V
V
ps
Symbol
V
DD
I
DD
Min
Supply
3.135
2.375
Frequency
Typical
3.3
2.5
50
Maximum
3.465
2.625
98
275.000
Units
V
V
mA
MHz
ppm
f
N
25
±20, ±25, ±50, ±100
1. The VCC6 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
2. See Standard Frequencies and Ordering Information for more information.
3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
4. Figure 1 defines the test circuit and Figure 2 defines these parameters.
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052, 155.520MHz. Please see “Typical Phase Noise and Jitter Report for the VCC6 series”.
7. Measured using a Wavecrest SIA3300C, 90K samples.
8. Outputs will be Enabled if Enable/Disable is left open.
V
DD
-1.3V
1
2
3
-1.3V
6
5
4
50
50
t
R
V
OH
50%
V
OL
On Time
Period
t
F
NC
NC
Figure 1.
Figure 2.
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
Page2
Performance Specifications
Table 2. Electrical Performance, LVDS Option
Parameter
Voltage
1
Current (No Load)
Nominal Frequency
2
Stability
2,3,
(Ordering Option)
Outputs
Output Logic Levels
4
Output Logic High
Output Logic Low
Differential Output Amplitude
Differential Output Error
Offset Voltage
Offset Voltage Error
Output Leakage Current
Output Rise and Fall Time
4
Load
Duty Cycle
5
Jitter (12 kHz - 20 MHz BW)155.52MHz
6
Period Jitter
7
RMS
P/P
Random Jitter
Deterministic Jitter
Output Enabled
8
Output Disabled
Disable Time
Enable/Disable Leakage Current
Enable Pull-Up Resistor
Output Enabled
Output Disabled
Start-Up Time
Operating Temp. (Ordering Option)
t
SU
T
OP
-10/70 or -40/85
33
1
10
фJ
фJ
45
t
R
/t
F
100 ohms differential
50
0.3
2.5
22
2.6
0
Enable/Disable
V
IH
V
IL
t
D
0.7*V
DD
0.3*V
DD
200
±200
V
V
ns
uA
KOhm
MOhm
ms
°C
55
0.7
%
ps
ps
ps
ps
ps
1.125
1.25
V
OH
V
OL
1.43
1.10
330
1.6
454
50
1.375
50
10
600
V
V
mV
mV
V
mV
uA
ps
Symbol
V
DD
I
DD
Min
Supply
3.135
2.375
Frequency
Typical
3.3
2.5
Maximum
3.465
2.625
60
Units
V
V
mA
MHz
ppm
f
N
80
±20, ±25, ±50, ±100
275.000
0.9
247
1. The VCC6 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
2. See Standard Frequencies and Ordering Information for more information.
3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
4. Figure 2 defines these parameters and Figure 3 defines the test circuit.
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052, 155.520MHz. Please see “Typical Phase Noise and Jitter Report for the VCC6 series”.
7. Measured using a Wavecrest SIA3300C, 90K samples.
8. Outputs will be Enabled if Enable/Disable is left open.
50
50
0.01 uF
DC
Out
Out
6
1
5
2
4
3
Figure 3.
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
Page3
Package and Pinout
Table 3. Pinout
Pin #
1
2
3
4
5
6
6
Symbol
E/D or NC
E/D or NC
GND
f
O
Cf
O
V
DD
7.0±0.15
5
VCC6-XXX
4
Function
Enable Disable or No Connection
Enable Disable or No Connection
Electrical and Lid Ground
Output Frequency
Complementary Output Frequency
Supply Voltage
The Enable/Disable function is set at the factory on either pin
1 or pin 2 and is an ordering option. Outputs will be Enabled if
the Enable/Disable is left open.
1.96
XXXMXX
YYWW C
1
2
1.397
3
1.6 max
1.27
1.78
3.66
5.0±0.15
1
6
2
Bottom View
5
3
3.57
4
Dimensions are in mm
2.54
5.08
2.54
5.08
Figure 4. Package Outline Drawing
Figure 5. Pad Layout
LVPECL Application Diagrams
140Ω
140Ω
Figure 6. Standard PECL Output Configuration Figure 7. Single Resistor Termination Scheme
Resistor values are typically 140 ohms for 3.3V
operation and 84 ohms for 2.5V operation.
Figure 8. Pull-Up Pull Down Termination
Resistor values are typically for 3.3V operation
For 2.5V operation, the resistor to ground is 62
ohms and the resistor to supply is 240 ohms
The VCC6 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 6. There are numerous application notes on
terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 7, and a pull-up/pull-down scheme as
shown in Figure 8. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
Page4
LVDS Application Diagrams
V
CC
LVDS
Driver
OUT+
OUT-
100
LVDS
Receiver
LVDS
Driver
100
Receiver
Figure 9. Standard LVDS
Output Configuration
Figure 10. LVDS to LVDS Connection, Internal 100ohm
Figure 11. LVDS to LVDS Connection
External 100ohm and AC blocking caps
Some LVDS structures have an internal 100 ohm resistor
Some input structures may not have an internal 100 ohm
on the input and do not need additional components.
resistor on the input and will need an external 100ohm
resistor for impedance matching. Also, the input may have
an internal DC bias which may not be compatible with
LVDS levels, AC blocking capacitors can be used.
One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-termi-
nated, and if one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching
into account. Load matching and power supply noise are the main contributors to jitter related problems.
Environmental and IR Compliance
Table 4. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Fine and Gross Leak
Resistance to Solvents
Moisture Sensitivity Level
Contact Pads
Condition
MIL-STD-883 Method 2002
MIL-STD-883 Method 2007
MIL-STD-883 Method 1010
MIL-STD-883 Method 2003
MIL-STD-883 Method 1014
MIL-STD-883 Method 2015
MSL1
Gold over Nickel
IR Compliance
Suggested IR Profile
Devices are built using lead free epoxy and can be subjected to
standard lead free IR reflow conditions shown in Table 5. Contact
pads are gold over nickel and lower maximum temperatures can also
be used, such as 220C.
Table 5. Reflow Profile
Parameter
PreHeat Time
Ramp Up
Time above 217°C
Time to Peak Temperature
Time at 260°C
Time at 240°C
Ramp down
S
260
R
UP
t
L
t
P
R
DN
Symbol
ts
R
UP
tL
tAMB-P
tP
tP2
R
DN
Value
200 sec Max
3°C/sec Max
150 sec Max
30 sec Max
60 sec Max
6°C/sec Max
Temperature (DegC)
217
200
150
t
S
t
AMB-P
25
480 sec Max
Reliability
Time (sec)
Vectron International • 267 Lowell Road, Suite 102, Hudson, NH 03051 • Tel: 1-88-VECTRON-1 • http://www.vectron.com
DLNA ( DIGITAL LIVING NETWORK ALLIANCE ) was created to provide a solution for unlimited sharing of digital media and content services on the Internet. Its predecessor was DHWG (Digital Home Working G...
Designing and building a mini violin is a fun DIY to try out when building your own microcontroller development board from scratch.Circuit SchematicThe circuit schematic is very simple. The ATtiny85 c...
1. Connect to the control panel (display the latest firmware date)This content is originally created by EEWORLD forum user eagler8 . If you want to reprint or use it for commercial purposes, you must ...
As wireless data transmission becomes more and more widespread, we seem to realize that wireless transmission technology is really around us. This article briefly introduces the similarities and diffe...
At present, mobile phone and router manufacturers often use concepts such as "dual-band" in their promotions. When we connect to WiFi networks, we often see the words 2.4G and 5G. At the same time, wh...
Firefly was detained for being a hooligan, but he refused to accept it: Who was giving off electricity? Who was streaking? Who has an exhibitionist fetish? The toilet is dark and I am not allowed to t...
Contents The present invention generally relates to the field of industrial measurement, and in particular, to a universal grounding ring and a method for manufacturing and using the grounding ring. ...[Details]
When we learned serial communication, we focused on the operation process of the serial port's underlying timing, so the routines were all simple sending and receiving of characters or strings. In ac...[Details]
According to Jiwei.com, on the evening of March 27, Nanjing University of Science and Technology Optoelectronics released its 2018 performance announcement. The announcement mentioned that during t...[Details]
1. Principle of multi-machine communication
In multi-machine communication, the host must be able to identify each slave, which can be achieved in the 51 series microcontrollers through the S...[Details]
On March 29, Micron Technology released its second quarter financial report for fiscal year 2022. According to the report, operating revenue in the second quarter of fiscal year 2022 was US$7.786 bi...[Details]
The following is my learning experience when learning AVR microcontrollers. I share it with you and learn together. 1. AVR microcontrollers use RISC architecture, while 8051 microcontrollers use CIS...[Details]
1 Temperature sensor MAX6662
MAX6662 is a 12-bit + sign bit temperature sensor. It also integrates a programmable over-temperature alarm and a three-wire (SPI compatible) serial interface in a ...[Details]
Nordic Semiconductor today announced three new PMICs that offer new chip-scale packaging (CSP) options and support higher battery terminal voltages. Power management ICs (PMICs) are a critical part...[Details]
Toyota also follows Tesla's lead and uses visual solutions to train and develop driving technology instead of using lidar? Recently, Toyota's Woven Planet said it will develop autonomous driving tech...[Details]
According to foreign media reports, Huawei has submitted "Hongmeng" trademark applications to almost all possible intellectual property organizations in the world... According to foreign media H...[Details]
Both Timer/Counter 0 and Timer/Counter 1 have 4 timing modes. The 16-bit timer processes the internal machine cycle. The machine cycle is increased by 1, and the timer value is increased by 1. In 1MH...[Details]
At the beginning of the Year of the Dragon, Beijing Green Vanadium signed its first vanadium battery order for 2024, providing a Vstorage-100kW all-vanadium liquid flow battery energy storage syste...[Details]
1. For npn: Connect the black test lead to the assumed collector c, and the red test lead to the assumed emitter e. Use your fingers to short-circuit b and c. Observe the pointer swing; then, swap th...[Details]
Recently, Tian Guanjun, deputy secretary of the county party committee and acting county magistrate, accompanied by Zhao Xu, member of the county party committee and deputy county magistrate, and h...[Details]