EMCORE’s Model 1935 DFB lasers offer a low cost solution for linear fiber optic
links. These components can be cooled with external thermo-electric coolers for
high stability, or run without TEC’s to reduce power consumption. The DFB laser
builds upon Ortel’s long history of high performance, leading edge designs in
CATV, wireless, and high speed digital applications. The laser diode devices are
packaged in a compact hermetic assembly together with monitor photodiode and
isolator, for flexible integration into various transmitter configurations.
Performance Highlights
Parameters
Min
-40
3
5
Optical Output Power
(1)
Typical
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Max
85
4.9
5.9
8.9
9.9
11.9
4000
-
-57
-60
-65
-68
-
-
Units
C
Applications
Video Signal Distribution in HFC and
FTTx Nodes
Signal Distribution in L-Band and
Wireless Remoting Links
High Linearity, Low Power Fiber Links
Operating Case Temperature Range
6
9
10
dBm
Frequency Range
Carrier-to-Noise Ratio (79 channels)
(1)
(1)
5
51
-
-
-
-
45
(1)
MHz
dB
dBc
Features
Linear DFB Laser Design
Ouput Power Up to 10 dBm Available
Bandwidth 47 – 1002 MHz
RoHS Compliance
Optical Isolator
Low Power Consumption
Monitor Photodiode
Composite Second Order (79 channels)
Standard Linearity
Enhanced Linearity
Composite Triple Beat (79 channels)
(1)
Standard Linearity
Enhanced Linearity
Optical Return Loss
(1)
dBc
dB
dB
Side Mode Suppression Ratio, CW
30
1. Performance at Tcase = 25°C
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Absolute Maximum Ratings
1
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress
ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the
operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect
device reliability.
Parameters
Storage Temperature
Operating Case Temperature
Laser Diode Forward Current
Laser Diode Reverse Voltage
Photodiode Forward Current
Photodiode Reverse Voltage
Average RF Input Power
Lead Soldering Temperature/Time
Relative Humidity
ESD
Symbol
T
STG
T
OP
I
OP
V
R
I
MPD
V
MPD,R
PIN
-
RH
-
Condition/Notes
Non-Operating
Continuous
CW
Continuous
Continuous
Continuous
60 Seconds
-
Continuous
Human Body Model
Min
-40
-40
-
-
-
-
-
-
-
-500
Max
85
85
150
1.0
2
10
62
260/10
85
+500
Unit
o
o
C
C
mA
V
mA
V
dBmV
o
C/sec
%
V
1. Absolute maximum data are limited to system design only; proper device performance is not guaranteed over rating
listed above. Operation beyond these maximum conditions may degrade device performance, lead to device failure,
shorter lifetime, and will invalidate the device warranty.
Electrical/Optical Characteristics
Parameters
Optical Output Power
Symbol
Conditions/Notes
3 dBm Version
5 dBm Version
6 dBm Version
9 dBm Version
10 dBm Version
T
case
= 25ºC
T
case
= 45ºC
Min
3
5
6
9
10
-
-
-
Typ
-
-
-
-
-
8
13
-
1.17
-
-
4
-
-
-
Max
4.9
5.9
8.9
9.9
11.9
15
20
80
1.8
0.3
1.2
8
2000
50
-150
Unit
P
O
dBm
Threshold Current
Laser Bias Current
Forward Voltage
Slope Efficiency
Thermal Slope Efficiency
Laser Input Impedance
MPD Current
MPD Dark Current
Relative Intensity Noise
I
TH
I
OP
V
F
SE
TSE
Z
I
MPD
I
D
RIN
mA
mA
V
mW/mA
-
A
nA
dB/Hz
I
op
T
case
= 25ºC, I
op
SE(Tc)/SE(25ºC)
T
case
= -20ºC to 85ºC
-
V
MPD
= 5V, I
op
V
MPD
= 5V, I
op
= 0
T
case
= 25ºC
CW, I
op
,
T
case
= 25ºC
5 MHz - 1002 MHz
-
0.07
0.4
2
50
-
-
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Electrical/Optical Characteristics
(continued)
Parameters
Tracking Error
Optical Isolation, T
case
= 25ºC
Spectral Width (-20 dB)
Side Mode Suppression Ratio
Optical Return Loss
Symbol
ΔPf
ISO
SMSR
ORL
Conditions/Notes
I
MON
= const
ER = 10log(P
O
/2.0) [dB]
Double Isolator
I
op
I
op
T
case
= 25ºC
Min
-1
45
-
30
35
Typ
-
-
0.1
45
-
Max
+1
-
1.0
-
-
Unit
dB
dB
nm
dB
dB
1. Referenced to base of TO header.
Forward Path RF Characteristics
1935F Performance Parameter
Frequency Response Flatness
Response Up-tilt
1
2,3,4
2,3,4
1
Symbol
|S
21
|
Conditions/Notes
47 MHz – 1002 MHz
5 MHz – 4000 MHz
47 MHz < f < 1002 MHz
Min
-
-
-1
51
-
-
-
-
Typ
-
-
Max
1
4
3
Unit
dB
p-p
dB
dB
dBc
Carrier-to-Noise Ratio
CNR
Standard Linearity
Enhanced Linearity
CSO
I
op
I
op
T
case
= 25ºC
I
op
T
case
= 25ºC
-
-
-
-
-
-
-57
-60
-65
-68
Composite Second Order
Composite Triple Beat
2,3,4
Standard Linearity
Enhanced Linearity
CTB
dBc
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. 3.7% OMI, 79 NTSC unmodulated carriers (50 MHz to 550 MHz). 10 km fiber.
3. Received power = 0 dBm.
4. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 75 system.
Return Path RF Characteristics
1935R Performance Parameters
Frequency Response Flatness
Second Order Distortion
Standard Linearity
Enhanced Linearity
2
2
1
Symbol
|S
21
|
Conditions/Notes
5 MHz - 200 MHz
P
F
= 3 dBm, OMI = 10% each
2-tone test: f1=7MHz, f2=56MHz
20 km of fiber
(7.5 dB total loss with connector) f1 + f2
P
F
= 3 dBm, OMI = 10% each
2-tone test: f1=7MHz, f2=56MHz
20 km of fiber
(7.5 dB total loss with connector) 2f2-f1
Min
-
Typ
-
Max
1
Unit
dB
p-p
DSO
-
-
-
-
-52
-58
dBc
Third Order Distortion
Standard Linearity
Enhanced Linearity
DTB
-
-
-
-
-63
-65
dBc
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. I
op
, T
case
= 25C. Test with laser input pin matched to a 75 system.
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Wide Bandwidth Path RF Characteristics
1935W Performance Parameters
Frequency Response Flatness
Input Third Order Intercept
1dB Compression Point
3
2
1
Symbol
|S
21
|
IIP3
P
1dB
Conditions/Notes
900 MHz – 4000 MHz
Standard Linearity, I
bb
I
bb
Min
-
30
16
Typ
-
-
-
Max
4
-
-
Unit
dB
p-p
dBm
dBm
1. I
op
, T
case
= 25C. Test with the laser Input pin matched to a 50 system.
2. IIP3 is measured at I
bb
where I
bb
is the bias point at which simultaneously the laser at its best linearity and the optical
power is within specification. Test Frequency F1 = 2700MHz, F2 = 2703MHz, RF in = 0dBm/frequency. 0km fiber.
3. Test at 2700MHz. 0km fiber.
Package Outline Drawing (dimensions are in mm)
Mounting Bracket
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
1935 F/R/W Coaxial DFB Laser Diode
O-Band CWDM 5 MHz – 4000 MHz
DATASHEET | AUGUST 2012
FIBER OPTICS
Reliability/Quality
Designed to meet qualification requirements of Telcordia
TM
(Bellcore) GR-468-CORE.
Schematic and Pinout
Schematic and Pinout A
3
PD
4
2
LD
1
Pin Definitions for Pinout A
Pin
1
2
3
4
Description
LD Anode, Case Ground
LD Cathode
PD Cathode
PD Anode
Pinout A
Bottom View
Laser Safety
This product meets the appropriate standard in Title 21 of the Code of Federal Regulations (CFR). FDA/CDRH Class 1 laser
product. This device has been classified with the FDA/CDRH under accession number 0220191.
All version of this laser are Class 1 laser product, tested according to IEC 60825-1:2007/EN 60825-1:2007
Single-mode fiber pigtail with SC/APC connectors (standard).
Wavelength = 1.3
m.
Maximum power = 50 mW.
Because of size constraints, laser safety labeling (including an FDA class 1 label) is not affixed to the module, but attached
to the outside of the shipping carton. Product is not shipped with power supply.
Caution: Use of controls, adjustments and procedures other than those specified herein may result in hazardous
laser radiation exposure.
| REV 2012.08
Information contained herein is deemed reliable and accurate as of the issue date. EMCORE reserves the right to change the design or specification at any time without notice.
There is a processor launched by NXP that has attracted much attention from the industry as soon as it came out. This is the i.MX 8M Plus, the first i.MX integrated with a dedicated neural processing ...
[i=s] This post was last edited by Peng Binghao on 2019-5-11 17:11 [/i] [font=宋体][size=6] [b]Ultimate Bunker DIY Happiness and Joy 2 in 1 [/b][/size][/font][b][font=宋体][size=6]CPU[/size][/font][font=宋...
I believe many people have used watchdogs. The main function of the watchdog is that the system cannot be fed when it crashes. When the watchdog timer reaches the specified time, the system will be fo...
What cost-effective things did everyone buy on Double 11? Welcome to post and share. If you receive the goods as soon as possible, you are also welcome to post and show your order.
Here I would like t...
After preparing the development materials and setting up the development environment, we will prepare a basic project; good infrastructure is the key to building a high-rise building, so the original ...
Wu Xiaoming, Deputy Director of Anhui Provincial Department of Information Industry:"One Center, Four Automotive Computing Platforms" as a Breakthrough The automotive industry is one of the six pillar...
The spectrum of the BOC modulated signal is split on both sides of the center frequency, which is conducive to avoiding the overlap of the spectrum of the center frequency signal, thereby reducing the...[Details]
The concept of industrial predictive maintenance has been around for a long time, dating back to when people first said "the machine will soon break down." From relubricating the bearings inside a wa...[Details]
Author: Sebastiano Grasso, Leonardo Agatino Miccoli, Giusy Gambino, Filippo Scrimizzi, STMicroelectronics Catania, Italy, As the automotive market continues to develop, car companies have increa...[Details]
After two years of record sales, North American
robot
orders fell 30% in 2023, according to a new report from the Association for Advancing Automation (A3). The group said it expects the ec...[Details]
Since the binocular vision monitoring system can imitate the functions of the human eye, perceive the three-dimensional world information, and obtain the depth information from the object to the CCD c...[Details]
Information security is one of the biggest challenges and difficulties in building smart cars. On September 27, at the Yunqi Conference, Xiaopeng Motors officially released the "digital car key wit...[Details]
1 Introduction The design of this frequency meter takes the AT89C51 microcontroller as the core and uses its internal timer/counter to complete the measurement of the period/frequency of the s...[Details]
On March 20, the mobilization meeting for the concentrated start of key projects in the first quarter of 2023 in Liaoning Province and the opening ceremony of the Yiwei lithium energy storage and pow...[Details]
Preface
With the popularity of mobile phones, portable music players and portable game consoles, people have begun to demand that these electronic devices be designed to be more compact, h...[Details]
In low-power switching power supplies, simple winding rectification is basically used to provide VCC, and the VCC power supply of the IC is the core of the switching power supply. In the debugging ...[Details]
Key points of interrupt control
1. When the CPU is processing a certain task, if a more urgent event occurs externally or internally, the CPU is required to suspend the work it is processing and deal...[Details]
On June 5, local time, BMW announced that it will jointly develop the next generation of electric technology with Jaguar Land Rover to jointly promote the advancement of electrification technology. A...[Details]
Influenced by the Internet of Everything, the integration of AI and IoT is becoming more and more common. Mu Yang, general manager of Alibaba's OTT business, posted a photo labeled "AIoT Customized T...[Details]
The auto-coupling step-down starting control cabinet is an electrical device widely used in the industrial field, mainly used to achieve the step-down starting and normal operation of the motor. It...[Details]