Vectron’s VCC6 Crystal Oscillator is a quartz stabilized, differential output oscillator, operating off either a 2.5 or 3.3 volt supply,
hermetically sealed 5x7 ceramic package.
Features
•
•
•
•
•
•
•
Ultra Low Jitter Performance, Fundamental or 3rd OT Crystal Design
Output Frequencies to 275.000MHz
0.3 ps typical RMS jitter, 12k-20MHz
Differential Output
Enable/Disable
-10/70°C, -40/85°C or -55/125°C Operation
Hermetically Sealed 5x7 Ceramic Package
•
•
•
•
•
•
•
•
•
•
Applications
Ethernet, GbE, Synchronous Ethernet
Fiber Channel
Enterprise Servers
Telecom
Clock source for A/D’s, D/A’s
Driving FPGA’s
Test and Measurement
PON
Medical
COTS
• Product is compliant to RoHS directive
and fully compatible with lead free assembly
Block Diagram
Complementary
Output
Output
V
DD
Crystal
Oscillator
E/D or NC
E/D or NC
Gnd
Page1
Performance Specifications
Table 1. Electrical Performance, LVPECL Option
Parameter
Voltage
1
Current (No Load)
Nominal Frequency
2
Stability
2,3
(Ordering Option)
Outputs
Output Logic Levels
4
, -10/70°C
Output Logic High
Output Logic Low
Output Logic Levels
4
, -40/85°C
Output Logic High
Output Logic Low
Output Rise and Fall Time
4
Load
Duty Cycle
5
Jitter (12 kHz - 20 MHz BW)155.52MHz
6
Period Jitter
7
RMS
P/P
Random Jitter
Deterministic Jitter
Output Enabled
8
Output Disabled
Disable Time
Enable/Disable Leakage Current
Enable Pull-Up Resistor
Output Enabled
Output Disabled
Start-Up Time
Operating Temp. (Ordering Option)
t
SU
T
OP
-10/70, -40/85 or -55/125
33
1
10
фJ
фJ
2.3
20
2.4
0
Enable/Disable
V
IH
V
IL
t
D
0.7*V
DD
0.3*V
DD
200
±200
V
V
ns
uA
KOhm
MOhm
ms
°C
ps
ps
ps
ps
45
V
OH
V
OL
V
OH
V
OL
t
R
/t
F
50 ohms into V
DD
-1.3V
50
0.3
55
0.7
%
ps
V
DD
-1.025
V
DD
-1.810
V
DD
-1.085
V
DD
-1.830
V
DD
-0.880
V
DD
-1.620
V
DD
-0.880
V
DD
-1.555
600
V
V
V
V
ps
Symbol
V
DD
I
DD
Min
Supply
3.135
2.375
Frequency
Typical
3.3
2.5
50
Maximum
3.465
2.625
98
275.000
Units
V
V
mA
MHz
ppm
f
N
25
±20, ±25, ±50, ±100
1. The VCC6 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
2. See Standard Frequencies and Ordering Information for more information.
3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
4. Figure 1 defines the test circuit and Figure 2 defines these parameters.
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052, 155.520MHz. Please see “Typical Phase Noise and Jitter Report for the VCC6 series”.
7. Measured using a Wavecrest SIA3300C, 90K samples.
8. Outputs will be Enabled if Enable/Disable is left open.
V
DD
-1.3V
t
R
V
OH
50%
t
F
1
NC
2
NC
3
6
5
4
50
50
V
OL
On Time
-1.3V
Period
Figure 1.
Page2
Figure 2.
Performance Specifications
Table 2. Electrical Performance, LVDS Option
Parameter
Voltage
1
Current (No Load)
Nominal Frequency
2
Stability
2,3,
(Ordering Option)
Outputs
Output Logic Levels
4
Output Logic High
Output Logic Low
Differential Output Amplitude
Differential Output Error
Offset Voltage
Offset Voltage Error
Output Leakage Current
Output Rise and Fall Time
4
Load
Duty Cycle
5
Jitter (12 kHz - 20 MHz BW)155.52MHz
6
Period Jitter
7
RMS
P/P
Random Jitter
Deterministic Jitter
Output Enabled
8
Output Disabled
Disable Time
Enable/Disable Leakage Current
Enable Pull-Up Resistor
Output Enabled
Output Disabled
Start-Up Time
Operating Temp. (Ordering Option)
t
SU
T
OP
-10/70, -40/85 or -55/125
33
1
10
фJ
фJ
2.5
22
2.6
0
Enable/Disable
V
IH
V
IL
t
D
0.7*V
DD
0.3*V
DD
200
±200
V
V
ns
uA
KOhm
MOhm
ms
°C
ps
ps
ps
ps
45
t
R
/t
F
100 ohms differential
50
0.3
55
0.7
%
ps
1.125
1.25
V
OH
V
OL
1.43
1.10
330
1.6
454
50
1.375
50
10
600
V
V
mV
mV
V
mV
uA
ps
Symbol
V
DD
I
DD
Min
Supply
3.135
2.375
Frequency
Typical
3.3
2.5
Maximum
3.465
2.625
60
Units
V
V
mA
MHz
ppm
f
N
80
±20, ±25, ±50, ±100
275.000
0.9
247
1. The VCC6 power supply pin should be filtered, eg, a 0.1 and 0.01uf capacitor.
2. See Standard Frequencies and Ordering Information for more information.
3. Includes calibration tolerance, operating temperature, supply voltage variations, aging and IR reflow.
4. Figure 2 defines these parameters and Figure 3 defines the test circuit.
5. Duty Cycle is defined as the On/Time Period.
6. Measured using an Agilent E5052, 155.520MHz. Please see “Typical Phase Noise and Jitter Report for the VCC6 series”.
7. Measured using a Wavecrest SIA3300C, 90K samples.
8. Outputs will be Enabled if Enable/Disable is left open.
50
50
Out
Out
0.01 uF
DC
6
1
5
2
4
3
Figure 3.
Page3
Package and Pinout
Table 3. Pinout
Pin #
1
2
3
4
5
6
Symbol
E/D or NC
E/D or NC
GND
f
O
Cf
O
V
DD
Function
Enable Disable or No Connection
Enable Disable or No Connection
Electrical and Lid Ground
Output Frequency
Complementary Output Frequency
Supply Voltage
Table 4. Enable Disable Function
(optional on pin 1 or pin2)
E/D Pin
High
Open
Low
Output
Clock Output
Clock Output
High Impedance
6
7.0±0.15
5
VCC6-XXX
XXXMXX
YYWW C
4
1.96
5.0±0.15
1
2
1.397
3
1.6 max
1.27
Marking
XXXMXXX = frequency
YY= Year
WW = Week
C = Country Code
Dimensions are in mm
2.54
1.78
3.66
1
6
2
Bottom View
5
3
3.57
4
2.54
5.08
5.08
Figure 4. Package Outline Drawing
Figure 5. Pad Layout
LVPECL Application Diagrams
140Ω
140Ω
Figure 6. Standard PECL Output Configuration Figure 7. Single Resistor Termination Scheme
Resistor values are typically 140 ohms for 3.3V
operation and 84 ohms for 2.5V operation.
Figure 8. Pull-Up Pull Down Termination
Resistor values are typically for 3.3V operation
For 2.5V operation, the resistor to ground is 62
ohms and the resistor to supply is 240 ohms
The VCC6 incorporates a standard PECL output scheme, which are un-terminated emitters as shown in Figure 6. There are numerous application notes on
terminating and interfacing PECL logic and the two most common methods are a single resistor to ground, Figure 7, and a pull-up/pull-down scheme as
shown in Figure 8. An AC coupling capacitor is optional, depending on the application and the input logic requirements of the next stage.
Page4
LVDS Application Diagrams
V
CC
LVDS
Driver
100
LVDS
Receiver
LVDS
Driver
100
Receiver
OUT+
OUT-
Figure 9. Standard LVDS
Output Configuration
Figure 10. LVDS to LVDS Connection, Internal 100ohm
Figure 11. LVDS to LVDS Connection
Some LVDS structures have an internal 100 ohm resistor
External 100ohm and AC blocking caps
on the input and do not need additional components.
Some input structures may not have an internal 100 ohm
resistor on the input and will need an external 100ohm
resistor for impedance matching. Also, the input may have
an internal DC bias which may not be compatible with
LVDS levels, AC blocking capacitors can be used.
One of the most important considerations is terminating the Output and Complementary Outputs equally. An unused output should not be left un-termi-
nated, and if one of the two outputs is left open it will result in excessive jitter on both. PC board layout must take this and 50 ohm impedance matching
into account. Load matching and power supply noise are the main contributors to jitter related problems.
Environmental and IR Compliance
Table 5. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Fine and Gross Leak
Resistance to Solvents
Moisture Sensitivity Level
Contact Pads
ThetaJC (bottom of package)
Weight
Condition
MIL-STD-883 Method 2002
MIL-STD-883 Method 2007
MIL-STD-883 Method 1010
MIL-STD-883 Method 2003
MIL-STD-883 Method 1014
MIL-STD-883 Method 2015
MSL1
Gold (0.3 um min - 1.0 um max) over Nickel
13 C/W
170 mg
IR Compliance
S
Suggested IR Profile
Devices are built using lead free epoxy and can be subjected to
standard lead free IR refl
ow conditions shown in Table 5. Contact
pads are gold over nickel and lower maximum temperatures can also
[i=s]This post was last edited by dsjsjf on 2019-3-1 11:16[/i] [url=https://en.eeworld.com/bbs/elecplay/content/103]The development board ST NUCLEO-H743ZI evaluated in this event is provided by STMicr...
I need help from all the masters in the forum. I have a .brd file, but I can't convert it into AD17. I have no choice but to ask for help from the masters. How should I convert it? Please teach me.
Th...
The "first bid in the country" for tax -control cash registers was issued recently in Guangdong Province, and five companies won the bid. On February 15, the Guangdong Provincial Government Procureme...
I need help: After the synchronous motor is powered on, the rotor keeps rotating 8 or 9 degrees forward, and then 8 or 9 degrees reversely, and keeps doing this cycle. The interval seems to be between...
A little learning method for analog electronic circuits1. Summary 1. Identification of feedback circuit (1) If there is a reverse transmission path for the signal in addition to the amplification path...
I DIYed an MP3 module, but it doesn't work properly. VS1053 can't read or write registers.The main function test code is shown above. The value of the VOL register is 0 when viewed through the serial ...
Abstract: Using AT89C2051 single-chip microcomputer as the core configuration, with temperature and humidity sensor SHT75, digital tube display, computer monitoring system and other components, th...[Details]
The most reliable way is to look up the instruction table. However, I can provide a rule that I have summarized to help you remember. You can improve it based on this:
This rule should be judged in ...[Details]
This lower computer development communication uses CAN, all Hex file parsing work is done on the upper computer, and the lower computer avoids complex operations as much as possible to speed up the b...[Details]
Project Overview
1.1 Project Background
An oscilloscope is an electronic measuring instrument that can display the dynamic waveform of a voltage signal. It can convert a time-varying volt...[Details]
Optical fiber communication is becoming increasingly important in the field of modern communications. It is widely used in engineering construction because of its large bandwidth, low signal-to-no...[Details]
I have been studying microcontrollers for so long, and I feel that if I want to go deeper, I have to read assembly language, or at least understand the internal structure of the microcontroller. Belo...[Details]
The progress of semiconductor technology has continuously reduced the size of circuits. The performance of a large computer that once took a large room to store can now be achieved by a laptop, and t...[Details]
Lithium battery energy storage has entered a period of rapid development at home and abroad, but more than 50 fire and explosion accidents have occurred in energy storage power stations around the ...[Details]
In recent years, the design of smartphones has become increasingly focused on being thin, light and convenient, which not only sets higher standards for device integration, but also brings challeng...[Details]
Let's take the key interrupt as an example to see how to use the interrupt based on the number of devices: Device Tree: tq2440_key { compatible = "tq2440,key"; interrupt-paren...[Details]
Digital voltmeter (digital panel meter) is a basic measuring tool widely used in the current electronics, electrical engineering, instrumentation, metering and measurement fields. Books and a...[Details]
According to foreign media reports, simply changing to another strap may be enough for a future Apple Watch to reconfigure its settings and start tracking the user's strap usage. For five year...[Details]
Earlier this month, Western Digital and Kioxia both announced that some of their NAND production lines were contaminated, resulting in a loss of production capacity in the first quarter of this year....[Details]
According to statistics from PV Headlines (WeChat ID: PV-2005) based on public information, in the third quarter of this year,
approximately 177 PV inverter bidding projects (bid sections) were...[Details]