IRFH5204PbF
HEXFET
®
Power MOSFET
V
DS
R
DS(on) max
(@V
GS
= 10V)
40
4.3
43
1.7
100
V
mΩ
nC
Ω
A
PQFN 5X6 mm
Q
g (typical)
R
G (typical)
I
D
(@T
c(Bottom)
= 25°C)
h
Applications
•
•
•
•
Secondary Side Synchronous Rectification
Inverters for DC Motors
DC-DC Brick Applications
Boost Converters
Features and Benefits
Features
Benefits
Low RDSon (< 4.3 mΩ)
Low Thermal Resistance to PCB (< 1.2°C/W)
100% Rg tested
Low Profile (<0.9 mm)
results in
Industry-Standard Pinout
⇒
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Industrial Qualification
Orderable part number
IRFH5204TRPbF
IRFH5204TR2PbF
Package Type
PQFN 5mm x 6mm
PQFN 5mm x 6mm
Lower Conduction Losses
Enables better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Note
Standard Pack
Form
Quantity
Tape and Reel
4000
Tape and Reel
400
EOL notice # 259
Absolute Maximum Ratings
V
DS
V
GS
I
D
@ T
A
= 25°C
I
D
@ T
A
= 70°C
I
D
@ T
C(Bottom)
= 25°C
I
D
@ T
C(Bottom)
= 100°C
I
DM
P
D
@T
A
= 25°C
P
D
@ T
C(Bottom)
= 25°C
T
J
T
STG
Parameter
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Power Dissipation
Max.
40
± 20
22
18
100
100
400
3.6
105
Units
V
g
g
c
h
h
A
W
W/°C
°C
Linear Derating Factor
Operating Junction and
Storage Temperature Range
g
0.029
-55 to + 150
Notes
through
are on page 9
1
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
March 12, 2015
IRFH5204PbF
Static @ T
J
= 25°C (unless otherwise specified)
BV
DSS
ΔΒV
DSS
/ΔT
J
R
DS(on)
V
GS(th)
ΔV
GS(th)
I
DSS
I
GSS
gfs
Q
g
Q
gs1
Q
gs2
Q
gd
Q
godr
Q
sw
Q
oss
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Forward Transconductance
Total Gate Charge
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Q
gs2
+ Q
gd
)
Output Charge
Gate Resistance
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min.
40
–––
–––
2.0
–––
–––
–––
–––
–––
96
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.05
3.6
–––
-9.3
–––
–––
–––
–––
–––
43
9.1
4.0
14
16
18
18
1.7
8.4
14
18
8.3
2460
515
250
Max. Units
Conditions
–––
V V
GS
= 0V, I
D
= 250uA
––– V/°C Reference to 25°C, I
D
= 1.0mA
4.3
mΩ V
GS
= 10V, I
D
= 50A
4.0
V
V
DS
= V
GS
, I
D
= 100μA
––– mV/°C
20
V
DS
= 40V, V
GS
= 0V
μA
250
V
DS
= 40V, V
GS
= 0V, T
J
= 125°C
100
V
GS
= 20V
nA
-100
V
GS
= -20V
–––
S V
DS
= 15V, I
D
= 50A
65
–––
V
DS
= 20V
V
GS
= 10V
–––
nC
I
D
= 50A
–––
–––
–––
–––
nC V
DS
= 16V, V
GS
= 0V
e
–––
–––
–––
–––
–––
–––
–––
–––
Ω
ns
V
DD
= 20V, V
GS
= 10V
I
D
= 50A
R
G
=1.8Ω
V
GS
= 0V
V
DS
= 25V
ƒ = 1.0MHz
pF
Avalanche Characteristics
E
AS
I
AR
Parameter
Single Pulse Avalanche Energy
Avalanche Current
d
Min.
–––
–––
Typ.
–––
–––
Typ.
–––
–––
Max.
102
50
Units
mJ
A
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Max. Units
100
h
Conditions
MOSFET symbol
showing the
integral reverse
G
D
A
Ã
400
–––
–––
1.3
V
–––
30
45
ns
–––
128
192
nC
Time is dominated by parasitic Inductance
S
p-n junction diode.
T
J
= 25°C, I
S
= 50A, V
GS
= 0V
T
J
= 25°C, I
F
= 50A, V
DD
= 20V
di/dt = 500A/μs
e
eÃ
Thermal Resistance
R
θJC
(Bottom)
R
θJC
(Top)
R
θJA
R
θJA
(<10s)
Junction-to-Case
Junction-to-Case
Junction-to-Ambient
Junction-to-Ambient
f
f
Parameter
g
g
Typ.
–––
–––
–––
–––
Max.
1.2
15
35
22
Units
°C/W
2
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
March 12, 2015
IRFH5204PbF
1000
TOP
VGS
15V
10V
7.00V
6.00V
5.50V
5.00V
4.75V
4.50V
1000
TOP
VGS
15V
10V
7.00V
6.00V
5.50V
5.00V
4.75V
4.50V
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
100
100
BOTTOM
10
BOTTOM
1
4.5V
0.1
10
4.5V
≤
60μs
PULSE WIDTH
0.01
0.1
1
Tj = 25°C
1
10
100
0.1
1
≤
60μs
PULSE WIDTH
Tj = 150°C
10
100
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
1000
RDS(on) , Drain-to-Source On Resistance
(Normalized)
Fig 2.
Typical Output Characteristics
1.8
ID = 50A
1.6
1.4
1.2
1.0
0.8
0.6
VGS = 10V
ID, Drain-to-Source Current (A)
100
T J = 150°C
10
T J = 25°C
1
VDS = 15V
≤60μs
PULSE WIDTH
0.1
3
4
5
6
7
8
9
10
-60 -40 -20 0
20 40 60 80 100 120 140 160
VGS, Gate-to-Source Voltage (V)
T J , Junction Temperature (°C)
Fig 3.
Typical Transfer Characteristics
100000
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Fig 4.
Normalized On-Resistance Vs. Temperature
14
ID= 50A
VGS, Gate-to-Source Voltage (V)
12
10
8
6
4
2
0
VDS= 32V
VDS= 20V
VDS= 8V
10000
C, Capacitance (pF)
Ciss
1000
Coss
Crss
100
10
1
10
VDS, Drain-to-Source Voltage (V)
100
0
10
20
30
40
50
60
QG, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.Drain-to-Source Voltage
3
www.irf.com
©
2015 International Rectifier
Fig 6.
Typical Gate Charge Vs.Gate-to-Source Voltage
March 12, 2015
Submit Datasheet Feedback
IRFH5204PbF
1000
1000
OPERATION IN THIS AREA LIMITED BY RDS(on)
100
T J = 150°C
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
100μsec
T J = 25°C
10
10
1msec
10msec
1
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-to-Drain Voltage (V)
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
0.10
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode Forward Voltage
125
Limited By Package
100
ID, Drain Current (A)
VGS(th) , Gate threshold Voltage (V)
Fig 8.
Maximum Safe Operating Area
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
ID = 1.0A
ID = 1.0mA
ID = 500μA
ID = 150μA
ID = 100μA
75
50
25
0
25
50
75
100
125
150
T C , Case Temperature (°C)
-75 -50 -25
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9.
Maximum Drain Current Vs.
Case (Bottom) Temperature
10
Thermal Response ( Z thJC ) °C/W
Fig 10.
Threshold Voltage Vs. Temperature
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
0.01
0.001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
March 12, 2015
IRFH5204PbF
RDS(on), Drain-to -Source On Resistance (m
Ω)
12
ID = 50A
10
8
6
4
2
0
4
6
8
10
12
14
16
18
20
T J = 25°C
T J = 125°C
EAS , Single Pulse Avalanche Energy (mJ)
450
400
350
300
250
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
ID
TOP
6.9A
16A
BOTTOM 50A
VGS, Gate -to -Source Voltage (V)
Fig 12.
On-Resistance vs. Gate Voltage
Fig 13.
Maximum Avalanche Energy vs. Drain Current
V
(BR)DSS
15V
tp
VDS
L
DRIVER
RG
20V
D.U.T
IAS
tp
+
V
- DD
A
I
AS
0.01
Ω
Fig 14a.
Unclamped Inductive Test Circuit
Fig 14b.
Unclamped Inductive Waveforms
V
DS
V
GS
R
G
V10V
GS
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1
R
D
90%
D.U.T.
+
V
DS
-
V
DD
10%
V
GS
t
d(on)
t
r
t
d(off)
t
f
Fig 15a.
Switching Time Test Circuit
Fig 15b.
Switching Time Waveforms
5
www.irf.com
©
2015 International Rectifier
Submit Datasheet Feedback
March 12, 2015