PD - 97208
IRGP4065PbF
PDP TRENCH IGBT
Features
l
Advanced Trench IGBT Technology
l
Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM
)
l
Low V
CE(on)
and Energy per Pulse (E
PULSE
for improved panel efficiency
l
High repetitive peak current capability
l
Lead Free package
Key Parameters
V
CE
min
V
CE(ON)
typ. @ I
C
= 70A
I
RP
max @ T
C
= 25°C
c
T
J
max
C
300
1.75
205
150
C
E
C
G
V
V
A
°C
G
E
n-channel
G
Gate
C
Collector
TO-247AC
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low E
PULSETM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
c
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
300
10lbxin (1.1Nxm)
N
Max.
±30
70
40
205
178
71
1.4
-40 to + 150
Units
V
A
W
W/°C
°C
Thermal Resistance
Parameter
R
θCS
R
θJA
Typ.
–––
0.24
–––
Max.
0.80
–––
40
Units
°C/W
R
θJC
Junction-to-Case
d
Case-to-Sink (flat, greased surface)
Junction-to-Ambient (typical socket mount)
www.irf.com
1
05/10/06
IRGP4065PbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
BV
CES
∆ΒV
CES
/∆T
J
Min. Typ. Max. Units
–––
0.23
1.20
1.35
1.75
2.35
2.00
–––
-11
2.0
50
–––
–––
26
62
20
–––
875
975
2200
110
55
5.0
13
Conditions
V
CE(on)
V
GE(th)
∆V
GE(th)
/∆T
J
I
CES
I
GES
g
fe
Q
g
Q
gc
t
st
E
PULSE
Collector-to-Emitter Breakdown Voltage 300
Breakdown Voltage Temp. Coefficient –––
–––
–––
Static Collector-to-Emitter Voltage
–––
–––
–––
Gate Threshold Voltage
2.6
Gate Threshold Voltage Coefficient
–––
Collector-to-Emitter Leakage Current
–––
–––
Gate-to-Emitter Forward Leakage
–––
Gate-to-Emitter Reverse Leakage
–––
Forward Transconductance
–––
Total Gate Charge
–––
Gate-to-Collector Charge
–––
Shoot Through Blocking Time
100
Energy per Pulse
–––
–––
C
iss
C
oss
C
rss
L
C
L
E
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
Internal Emitter Inductance
–––
–––
–––
–––
–––
–––
V V
GE
= 0V, I
CE
= 1 mA
––– V/°C Reference to 25°C, I
CE
= 1mA
V
GE
= 15V, I
CE
= 25A
e
1.40
V
GE
= 15V, I
CE
= 40A
e
–––
2.10
V V
GE
= 15V, I
CE
= 70A
e
V
GE
= 15V, I
CE
= 120A
e
–––
V
GE
= 15V, I
CE
= 70A, T
J
= 150°C
–––
5.0
V V
CE
= V
GE
, I
CE
= 500µA
––– mV/°C
25
µA V
CE
= 300V, V
GE
= 0V
V
CE
= 300V, V
GE
= 0V, T
J
= 150°C
–––
100
nA V
GE
= 30V
V
GE
= -30V
-100
–––
S V
CE
= 25V, I
CE
= 25A
–––
nC V
CE
= 200V, I
C
= 25A, V
GE
= 15Ve
–––
–––
ns V
CC
= 240V, V
GE
= 15V, R
G
= 5.1Ω
L = 220nH, C= 0.40µF, V
GE
= 15V
–––
µJ V
CC
= 240V, R
G
= 5.1Ω, T
J
= 25°C
L = 220nH, C= 0.40µF, V
GE
= 15V
–––
V
CC
= 240V, R
G
= 5.1Ω, T
J
= 100°C
V
GE
= 0V
–––
–––
pF V
CE
= 30V
–––
–––
nH
–––
ƒ = 1.0MHz,
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
Half sine wave with duty cycle = 0.25, ton=1µsec.
R
θ
is measured at
T
J
of approximately 90°C.
Pulse width
≤
400µs; duty cycle
≤
2%.
2
www.irf.com
IRGP4065PbF
200
200
160
TOP
ICE (A)
BOTTOM
ICE (A)
120
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
160
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
BOTTOM
80
80
40
40
0
0
2
4
6
8
10
12
14
16
VCE (V)
0
0
2
4
6
8
10
12
14
16
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
280
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
Fig 2. Typical Output Characteristics @ 75°C
360
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
240
200
ICE (A)
BOTTOM
320
280
240
ICE (A)
BOTTOM
160
120
80
40
0
0
2
4
6
8
10
12
14
16
VCE (V)
200
160
120
80
40
0
0
2
4
6
8
10
12
14
16
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
600
ICE, Collector-to-Emitter Current (A)
Fig 4. Typical Output Characteristics @ 150°C
20
IC = 25A
500
15
400
300
200
T J = 125°C
T J = 25°C
VCE (V)
10
T J = 25°C
T J = 150°C
5
100
0
0
5
10
15
20
VGE, Gate-to-Emitter Voltage (V)
0
0
5
10
VGE (V)
15
20
Fig 5. Typical Transfer Characteristics
Fig 6. V
CE(ON)
vs. Gate Voltage
www.irf.com
3
IRGP4065PbF
80
70
IC, Collector Current (A)
220
200
Repetitive Peak Current (A)
180
160
140
120
100
80
60
40
20
0
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
60
50
40
30
20
10
0
0
25
50
75
100
125
150
25
50
75
100
125
150
Fig 7. Maximum Collector Current vs. Case Temperature
1000
V CC = 240V
900
Energy per Pulse (µJ)
T C, Case Temperature (°C)
Case Temperature (°C)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
L = 220nH
C = 0.4µF
100°C
L = 220nH
C = variable
900
Energy per Pulse (µJ)
100°C
800
700
600
500
400
300
200
800
700
600
500
400
160
170
180
190
200
210
220
230
25°C
25°C
150 160 170 180 190 200 210 220 230 240
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical E
PULSE
vs. Collector Current
1400
V CC = 240V
1200
Energy per Pulse (µJ)
Fig 10. Typical E
PULSE
vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
L = 220nH
t = 1µs half sine
C= 0.4µF
1000
800
600
C= 0.2µF
400
200
25
50
75
100
125
150
TJ, Temperature (ºC)
100
IC (A)
C= 0.3µF
10µsec
100µsec
10
1msec
1
1
10
VCE (V)
100
1000
Fig 11. E
PULSE
vs. Temperature
Fig 12. Forrward Bias Safe Operating Area
4
www.irf.com
IRGP4065PbF
100000
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd , C ce SHORTED
Cres = C gc
Coes = Cce + Cgc
25
IC = 25A
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
20
VCE = 240V
VCE = 200V
VCE = 150V
Cies
1000
15
10
100
Coes
Cres
5
10
0
50
100
150
200
250
300
VCE, Collector-toEmitter-Voltage(V)
0
0
10
20
30
40
50
60
70
80
Q G, Total Gate Charge (nC)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
1
D = 0.50
Thermal Response ( Z thJC )
0.20
0.1
0.10
0.05
0.02
0.01
τ
J
τ
J
τ
1
τ
1
R
1
R
1
τ
2
R
2
R
2
R
3
R
3
τ
3
Ri (°C/W)
τi
(sec)
τ
C
0.000131
τ
0.146
0.382
0.271
0.001707
0.014532
0.01
τ
2
τ
3
Ci=
τi/Ri
Ci
τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
0.001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5