QPL product with established reliability (ER): meets
requirements of MIL-PRF-55182/9
•
Load life stability: ± 0.005 % for 2000 h, 0.3 W at + 125 °C
•
Temperature coefficient of resistance (TCR): ± 2 ppm/°C max.
(- 55 °C to + 175 °C)
•
Resistance tolerance: to ± 0.005 %
•
Thermal EMF: < 0.1 µV/°C
•
Qualified resistance range: 4.99
Ω
to 121 kΩ (RNC90Y)
30.1
Ω
to 121 kΩ (RNC90Z)
•
Specially conditioned non-QPL resistors available
See data sheet “Improved Performance Tested”
•
Fast thermal stabilization
•
Rise time: 1 ns without ringing
•
Special coatings that provide a cushioning layer which isolates
the resistive element from external stresses and moisture
•
Electrostatic discharge (ESD) above 25 000 V
•
Non inductive, non capacitive design
•
Current noise < - 42 dB
•
Prototype sample available from 72 h
INTRODUCTION
Vishay Military Established Reliability resistors are available
in resistance values from 4.99
Ω
through 121 kΩ and for
tolerances from ± 0.005 % to ± 1.0 %. The same resistors are
also available as a non-qualified product for customers
desiring higher or lower resistance values and the same or
better performance capabilities. (See table 2) Both the
qualified and the non-qualified version are manufactured on
the same production line facilities and are subjected to the
same process, lot control, conditioning, and GRP A (100 %)
screening. Qualified versions receive additional MIL Group B
and C testing.
TABLE 1 - SPECIFICATIONS COMPARISON
SPECIFICATION
RNC90Y (QUALIFIED)
RNC90Z (QUALIFIED)
S555 (NON-QUALIFIED)
Z555 (NON-QUALIFIED)
MIL-PRF-55182/9
MIL-PRF-55182/9
VISHAY PERFORMANCE
VISHAY PERFORMANCE
CHARACTERISTIC Y LIMITS CHARACTERISTIC Z LIMITS
LIMITS
LIMITS
± 5 ppm/°C
± 2 ppm/°C
± 5 ppm/°C
± 3 ppm/°C ± 2.5 ppm/°C ± 2 ppm/°C
(- 55 °C to + 125 °C)
(- 55 °C to + 175 °C)
(- 55 °C to + 125 °C)
± 10 ppm/°C
(- 55 °C to + 125 °C)
(+ 125 °C to + 175 °C)
4.99
Ω
to
> 25
Ω
to
4.99
Ω
to 121 k
Ω
30.1
Ω
to 121 k
Ω
1
Ω
to 150 k
Ω
> 80
Ω
25
Ω
80
Ω
Level R
Level R
Not specified
Not specified
Temperature
Coefficient of
Resistance
Resistance Range
Failure Rate
Load-Life Stability
0.3 W at + 125 °C
at 2000 h
at 10 000 h
Current Noise
High-Frequency
Operation
Rise Time
Inductance
3)
(L)
Capacitance (C)
Voltage Coefficient
Working Voltage
4)
Thermal EMF
5)
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.05 % maximum
ΔR
± 0.5 % maximum
ΔR
Not specified
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
± 0.015 % maximum
ΔR
2)
± 0.05 % maximum
ΔR
2)
- 40 dB minimum
1.0 ns at 1 k
Ω
0.1 µH maximum
0.08 µH typical
1.0 pF maximum
0.5 pF typical
0.0001 %/V
300 V maximum
0.1 µV/°C maximum
1 µV/W maximum
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Not specified
Not specified
Not specified
0.0005 %/V
300 V maximum
Not specified
Notes
1. Qualification and failure rate verification test data is maintained by Vishay Foil and is available upon request. Lot traceability and identification
data is maintained by Vishay Foil for 7 years.
2. Load life
ΔR
Maximum can be reduced by 80 % through Enhanced Reliability Testing (ERT). Consult Vishay Applications Engineering for
details.
3. Inductance (L) due mainly to the leads.
4. Not to exceed power rating of resistor.
5. µV/°C relates to EMF due to lead temperature differences and µV/W due to power applied to the resistor.
6. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z.
Document Number: 63007
Revision: 23-Mar-10
For any questions, contact:
foil@vishaypg.com
www.foilresistors.com
1
Military and Space Established Reliability
Vishay Foil Resistors
FIGURE 1 - COMPARISON OF RNC90Y TO RNC90Z TEMPERATURE COEFFICIENT OF RESISTANCE
+ 1000
RNC90Y
+ 1000
+ 1000
RNC90Z
+ 1000
+ 500
+ 400
ΔR/R
(ppm)
ΔR/R
(ppm)
+ 160
0
- 160
+ 300
+ 200
0
- 200
- 300
- 400
- 500
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
- 1000
- 55
25
Temperature (°C)
125
- 1000
175
Specification ± 5 ppm/°C ± 10 ppm/°C
Specification ± 2 ppm/°C
FIGURE 2 - TRIMMING TO VALUES
(Conceptual Illustration)
FIGURE 3 - POWER DERATING CURVE
+ 70 °C
Interloop Capacitance
Reduction in Series
Current Path
Before Trimming
Current Path
After Trimming
Trimming Process
Removes this Material
from Shorting Strip Area
Changing Current Path
and Increasing
Resistance
Percent of Rated Power
200
150
100
50
0
- 50
Rated Power
Mutual Inductance
Reduction due
to Change in
Current Direction
- 25
0
+ 25 + 50 + 75 + 100 + 125 + 150 + 175
Ambient Temperature °C
Note:
Foil shown in
black,
etched spaces in
white
FIGURE 4 - IMPRINTING AND DIMENSIONS
RNC90Y and RNC90Z Military Approved Resistors
Front View
L
VISHAY
18612
XXXXX J
Side View
Manufacturers
Identification
Number
W
Resistance
Tolerance
Code
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
Rear View
Model Number
XXXXX
100R01
B
R
H
Mfr. Code
07
11
B
Factory Year Week
Resistance
Value Code
Failure Rate Code
(Not Present If
Non-Qualified)
LL
ST
Jan Designator
(Non Present If
Non-Qualified)
SW
LS
1)
Note
1. 0.200" (5.08 mm) lead spacing available - specify RNC90T for RNC90Y, and RNC90S for RNC90Z
www.foilresistors.com
2
For any questions, contact:
foil@vishaypg.com
Document Number: 63007
Revision: 23-Mar-10
Military and Space Established Reliability
Vishay Foil Resistors
TABLE 2 - MODEL SELECTION
STANDARD RESISTANCE
TOLERANCE
TIGHTEST
LOOSEST
%
%
30.1 to 121K
± 0.005
± 1.0
16.2 to 30.0
± 0.05
± 1.0
RNC90Y
4.99 to 16.0
± 0.1
± 1.0
RNC90Z
30.1 to 121K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
20 to < 30.1
± 0.01
± 1.0
5 to < 20
± 0.05
± 1.0
S555
(NON QPL)
2 to < 5
± 0.1
± 1.0
1 to < 2
± 0.5
± 1.0
> 121K to 150K
± 0.005
± 1.0
30.1 to 121K
± 0.005
± 1.0
Z555
20 to < 30.1
± 0.01
± 1.0
(NON QPL)
4.99 to < 20R
± 0.05
± 1.0
Note
MODEL
NUMBER
RESISTANCE
RANGE
(Ω)
FAILURE
RATE
M, P, R
(See
Table 3)
AVERAGE
WEIGHT
(g)
at + 70 °C at + 125 ° C
0.6 W
0.6 W
0.3 W
0.3 W
0.6
0.6
W: 0.105 ± 0.010
L: 0.300 ± 0.010
H: 0.326 ± 0.010
ST: 0.015 ± 0.005
SW: 0.040 ± 0.005
LL: 1.000 ± 0.125
LS: 0.150 ± 0.005
2.67 ± 0.25
7.62 ± 0.25
8.28 ± 0.25
0.38 ± 0.13
1.02 ± 0.13
25.4 ± 3.18
3.81 ± 0.13
AMBIENT
POWER RATING
DIMENSIONS
INCHES
mm
-
0.6 W
0.3 W
0.6
-
-
0.4 W
0.6 W
0.2 W
0.3 W
0.6
0.6
• S555 and Z555 units are manufactured on the same production line facilities and are subjected to all the same process and lot control
requirements imposed on RNC90Y (Z) version, as well as all of the special screening, environmental conditioning and documentation
stipulations outlined in MIL-PRF 55182/9
TABLE 3 - GLOBAL PART NUMBER INFORMATION
NEW GLOBAL PART NUMBER: Y1189100R500AR0L (preferred part number format)
DENOTES PRECISION
Y
VALUE
R
=
Ω
K
= kΩ
LIFE FAILURE RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
AER*
0
= standard
1 - 999
= custom
Y
1
1
8
9
1
0
0
R
5
0
0
A
R
0
L
PRODUCT CODE
1189
= RNC90Z
0089
= RNC90Y
1508
= RNC90T
1506
= RNC90S
0088
= S555
1288
= Z555
RESISTANCE TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
PACKAGING
L
= bulk pack
R
= tape and reel
FOR EXAMPLE: ABOVE GLOBAL ORDER Y1189 100R500 A R 0 L:
TYPE: RNC90Z
VALUE: 100.5
Ω
ABSOLUTE TOLERANCE: ± 0.05 %
LIFE FAILURE RATE (LFR): ± 0.01 %
AER: standard
PACKAGING: bulk pack
HISTORICAL PART NUMBER: RNC90Z 100R50 A R B (will continue to be used)
RNC90Z
MODEL
RNC90Z
RNC90S
RNC90Y
RNC90T
S555
Z555
Note
* For non-standard requests, please contact application engineering.
Document Number: 63007
Revision: 23-Mar-10
For any questions, contact:
foil@vishaypg.com
www.foilresistors.com
3
100R50
OHMIC VALUE
100.5
Ω
A
RESISTANCE
TOLERANCE
V
= ± 0.005 %
T
= ± 0.01 %
A
= ± 0.05 %
B
= ± 0.1 %
D
= ± 0.5 %
F
= ± 1.0 %
R
LIFE FAILURE
RATE (LFR)
R
= ± 0.01 %
P
= ± 0.1 %
M
= ± 1.0 %
B
PACKAGING
B
= bulk pack
Military and Space Established Reliability
Vishay Foil Resistors
CAGE #18612
“Commercial and Government Entity”
Formerly “FSCM”
The response of military and non military grade resistors to environmental stresses can be made better by “Improved
Performance Testing” (IPT). The IPT part will see burn-in and cycling that removes the “knee” from the normal drift of non IPT
parts. (See Table 4 for the improvement to expect in military parts when calling for Vishay recommended screening). Users
should be aware that IPT testing renders the part non QPL and so a 3XXXXX part number will be assigned by Vishay. Consult
Applications Engineering for details and ordering advice.
TABLE 4 - IMPROVED PERFORMANCE TESTING (NON-QPL APPROVED) VS. QPL
TEST
GROUP
I
TEST
Power Conditioning
Thermal Shock and
Overload Combined
Resistance Temperature
Characteristic
Low Temperature Storage
Low Temperature Operation
Terminal Strength
DWV
Insulation Resistance
Resistance to Soldering Heat
Moisture Resistance
Shock
Vibration
Load Life at + 125 °C; 2000 h
Load Life at + 125 °C; 10 000 h
+ 85 °C Power Rating
+ 70 °C Power Rating
+ 25 °C Power Rating
Storage Life
High Temperature Exposure
Max. Allowance Reactance
Current Noise
Voltage Coefficient
Thermal EMF
not done
4.8.2
4.8.3
4.8.9
RNC90Y
MIL-PRF-55182/9
METHOD PARAGRAPH
LIMITS
-
-
± 0.05 %
± 5 ppm/°C
VISHAY
IMPROVED PERFORMANCE
TESTING
(IPT) LIMITS
± 0.0025 %
± 0.0025 %
± 0.0025 %
< ± 2 ppm/°C
(- 55 °C to + 125 °C)
(Can be sorted for tighter tracking)
± 0.0025 %
± 0.0025 %
± 0.001 %
± 0.001 %
> 10
4
MΩ
± 0.001 %
± 0.015 %
± 0.0025 %
± 0.0025 %
± 0.005 % (50 ppm)
± 0.015 % (150 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.005 % (50 ppm)
± 0.0025 %
± 0.005 %
<1%
< - 42 dB
< 0.00001 %/V
(< 0.1 ppm/V)
0.1 µV/°C
II
III
IV
V
V (a)
V (b)
VI
VII
VIII
4.8.23
4.8.10
4.8.11
4.8.12
4.8.13
4.8.14
4.8.15
4.8.16
4.8.17
4.8.18
4.8.18
-
4.8.18
-
-
4.8.19
-
-
4.8.20
-
-
± 0.05 %
± 0.05 %
± 0.02 %
± 0.02 %
10
4
MΩ
± 0.02 %
± 0.05 %
± 0.01 %
± 0.02 %
± 0.05 %
± 0.5 %
-
± 0.05 %
-
-
± 0.5 %
-
-
0.0005 %/V
(5 ppm/V)
-
FIGURE 5 - IPT IMPRINTING AND DIMENSIONS
in inches (millimeters)
Front View
0.300 ± 0.010
(7.62 ± 0.25)
VISHAY
XXXX
3XXXXX
Date Code
01
10
Year Week
0.015 ± 0.005
(0.381 ± 0.13)
Model Number
0.150 ± 0.005
(3.81 ± 0.13)
Lead Material
#22 AWG
(0.025 Dia.)
Solder Coated
Copper
0.040 ± 0.005
(1.02 ± 0.13)
Side View
0.105 ± 0.010
(2.67 ± 0.25)
Rear View
Optional
Customer P/N
6 Digits Maximum
Resistance
Value Code
Tolerance
1.00 ± 0.125
(25.4 ± 3.18)
0.326 ± 0.010
(8.28 ± 0.25)
XXXXXX
100R01
0.01 %
www.foilresistors.com
4
For any questions, contact:
foil@vishaypg.com
Document Number: 63007
Revision: 23-Mar-10
Legal Disclaimer Notice
Vishay Precision Group
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Precision Group, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay Precision Group”), disclaim any and all liability for any errors, inaccuracies or incompleteness
contained herein or in any other disclosure relating to any product.
Vishay Precision Group disclaims any and all liability arising out of the use or application of any product described
herein or of any information provided herein to the maximum extent permitted by law. The product specifications do
not expand or otherwise modify Vishay Precision Group’s terms and conditions of purchase, including but not limited
to the warranty expressed therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay Precision Group.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay Precision Group products not expressly indicated
for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay Precision Group for
any damages arising or resulting from such use or sale. Please contact authorized Vishay Precision Group
personnel to obtain written terms and conditions regarding products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Principles of Operating Systems by Chen Xiangqun from Peking University : https://training.eeworld.com.cn/course/50361. Master the basic concepts, functional components, system structure and operating...
Looking at the box, [b][color=#5E7384]This content is originally created by EEWORLD forum user [size=3]btty038[/size]. If you want to reprint or use it for commercial purposes, you must obtain the aut...
Use a vinyl cutter or laser cutter to make the enclosure, then use a Circuit Playground Bluefruit Express and Adafruit's NeoPixel ring to light up the lantern. You can add custom color animations and ...
As EV/HEV becomes more and more popular in the Chinese market, BMS, as its key part, has attracted more and more attention. TI has been studying this direction for many years and provides fully integr...
The DCM ChiP is an isolated, regulated DC-DC converter that operates from an unregulated wide range input to produce an isolated output. With its high-frequency zero voltage switching (ZVS) topology, ...
Mouser Electronics, an authorized global distributor of electronic components focused on the introduction of new products, is pleased to announce that it has won the 2019 North American Distributor o...[Details]
1. Introduction
The performance parameters of gas sensors must be tested when studying gas sensing mechanisms, analyzing preparation processes, supervising production processes, inspecting prod...[Details]
When using single-chip microcomputers to develop various embedded application systems, asynchronous serial communication is a commonly used communication mode. In some applications, multi-channel asyn...[Details]
According to foreign media reports, on September 1, local time, Seoul Robotics, a 3D computer vision company that uses AI and deep learning to empower future autonomous driving technology, announced ...[Details]
Digital pressure gauge is a commonly used pressure instrument , which is widely used in many industries. There are many problems that users need to pay attention to when using digital pressure ga...[Details]
From the Internet to the Internet of Things, as the number of cars owned and used is increasing, the Internet of Things should have included cars long ago.
In this auto show, various forward-lookin...[Details]
Recently, SIA announced that semiconductor sales in February were $32.9 billion, a decrease of 2.4% from $35.4 billion in January. "Global semiconductor sales in February were generally stable, exc...[Details]
Machine vision has grown significantly in recent years. In 2015, the global machine vision market size was about 4.2 billion US dollars, an increase of 10.5%. In 2015, the market size of my country w...[Details]
0 Introduction
With the continuous development of the economy and the continuous expansion of logistics industries in various places, some people, in order to pursue higher local interests, o...[Details]
Working Principle of Solar LED Street Light
This article introduces the working principle of solar LED street lights in detail and deeply analyzes the problems and solutions of eac...[Details]
LED multiplexing technology and application (LED pixel decomposition technology)
LED pixel decomposition (also known as virtual pixel) technology uses LED multiplexing technology. The same LED ligh...[Details]
1 Main circuit absorption circuit and di/dt suppression circuit
The input side of the rectifier circuit should be connected to an anti-lightning overvoltage or operation overvoltage absor...[Details]
The global patent protection community OIN (Open Invention Network) recently announced that Xiaomi Group has joined OIN as a community member. It is reported that OIN is a shared defensive patent p...[Details]
On September 16-17, the 2018 "Energy Think Tank" with the theme of "Change and Invariance" was held in Hangzhou, Zhejiang. This "Think Tank" focused on the development direction of China's photovol...[Details]
ROHM, a world-renowned semiconductor manufacturer headquartered in Kyoto, Japan, will participate in the world's leading trade fair and conference for electronic components, systems, applications a...[Details]