EEWORLDEEWORLDEEWORLD

Part Number

Search

TLDR4400-AS21

Description
Visible LED, Diffused
CategoryLED optoelectronic/LED    photoelectric   
File Size112KB,6 Pages
ManufacturerVishay
Websitehttp://www.vishay.com
Environmental Compliance
Download Datasheet Parametric View All

TLDR4400-AS21 Overview

Visible LED, Diffused

TLDR4400-AS21 Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
MakerVishay
Reach Compliance Codeunknown
color@wavelengthRed
Maximum forward current0.05 A
Maximum forward voltage2.2 V
Lens typeDIFFUSED
Maximum operating temperature100 °C
Minimum operating temperature-40 °C
total height4.8 mm
peak wavelength650 nm
Maximum reverse voltage6 V
perspective80 deg

TLDR4400-AS21 Preview

TLDR440.
Vishay Semiconductors
High Intensity LED,
3 mm Tinted Diffused
FEATURES
• Exceptional brightness
• Very high intensity even at low drive
currents
• Wide viewing angle
• Low forward voltage
• 3 mm (T-1) tinted diffused package
• Deep red color
• Categorized for luminous intensity
• Outstanding material efficiency
• Lead (Pb)-free device
APPLICATIONS
• Bright ambient lighting conditions
• Battery powered equipment
• Indoor and outdoor information displays
• Portable equipment
• Telecommunication indicators
• General use
19220
DESCRIPTION
This LED contains the double heterojunction (DH)
GaAlAs on GaAs technology.
This deep red LED can be utilized over a wide range of
drive current. It can be DC or pulse driven to achieve
desired light output.
The device is available in a 3 mm tinted diffused
package.
PRODUCT GROUP AND PACKAGE DATA
• Product group: LED
• Package: 3 mm
• Product series: standard
• Angle of half intensity: ± 40°
PARTS TABLE
PART
TLDR4400
TLDR4401
COLOR, LUMINOUS INTENSITY
Red,I
V
> 25 mcd
Red, I
V
= (25 to 50) mcd
TECHNOLOGY
GaAIAs on GaAs
GaAIAs on GaAs
ABSOLUTE MAXIMUM RATINGS
1)
TLDR440.
PARAMETER
Reverse voltage
DC Forward current
Surge forward current
Power dissipation
Junction temperature
Operating temperature range
Storage temperature range
Soldering temperature
Thermal resistance junction/
ambient
Note:
1)
T
amb
= 25 °C unless otherwise specified
Document Number 83001
Rev. 1.5, 18-Sep-07
www.vishay.com
1
t
5 s, 2 mm from body
T
amb
60 °C
t
p
10
μs
T
amb
60 °C
TEST CONDITION
SYMBOL
V
R
I
F
I
FSM
P
V
T
j
T
amb
T
stg
T
sd
R
thJA
VALUE
6
50
1
100
100
- 40 to + 100
- 55 to + 100
260
400
UNIT
V
mA
A
mW
°C
°C
°C
°C
K/W
TLDR440.
Vishay Semiconductors
Optical and Electrical Characteristics
1)
TLDR440.,
Red
PARAMETER
Luminous intensity
2)
Luminous intensity
Dominant wavelength
Peak wavelength
Spectral line half width
Angle of half intensity
Forward voltage
Reverse current
Junction capacitance
Note:
1)
T
amb
= 25 °C, unless otherwise specified
2)
In one Packing Unit I
Vmin
/I
Vmax
0.5
TEST CONDITION
I
F
= 20 mA
I
F
= 1 mA
I
F
= 20 mA
I
F
= 20 mA
I
F
= 20 mA
I
F
= 20 mA
I
F
= 20 mA
V
R
= 6 V
V
R
= 0, f = 1 MHz
PART
TLDR4400
TLDR4401
SYMBOL
I
V
I
V
I
V
λ
d
λ
p
Δλ
ϕ
V
F
I
R
C
j
30
MIN
25
25
2
648
650
20
± 40
1.8
2.2
10
TYP.
45
50
MAX
UNIT
mcd
mcd
mcd
nm
nm
nm
deg
V
μA
pF
TYPICAL CHARACTERISTICS
T
amb
= 25 °C, unless otherwise specified
125
10000
T
amb
65
°
C
P - Power Dissipation (mW)
V
I
F
- Forward Current (mA)
100
1000
t
p
/T= 0.01
0.02
0.05
75
100
1
10
0.5 0.2
0.1
50
25
0
0
95 10904
20
40
60
80
100
1
0.01
95 10047
0.1
1
10
100
T
amb
- Ambient Temperature (°C)
t
p
- Pulse Length (ms)
Figure 1. Power Dissipation vs. Ambient Temperature
Figure 3. Forward Current vs. Pulse Length
60
50
40
30
20
10
0
0
95 10095
I
V
rel
- Relative Luminous Intensity
10°
20°
30°
I
F
- Forward Current (mA)
40°
1.0
0.9
0.8
0.7
50°
60°
70°
80°
0.6
0.4
0.2
0
0.2
0.4
0.6
20
40
60
80
100
95 10020
T
amb
- Ambient Temperature (°C)
Figure 2. Forward Current vs. Ambient Temperature for InGaN
Figure 4. Rel. Luminous Intensity vs. Angular Displacement
www.vishay.com
2
Document Number 83001
Rev. 1.5, 18-Sep-07
TLDR440.
Vishay Semiconductors
100
I
V
rel
- Relative Luminous Intensity
red
I
F
- Forward Current (mA)
10
red
1
10
0.1
1
1
95 10014
1.5
2
2.5
3
0.01
0.1
95 10016
1
10
100
V
F
- Forward
Voltage
(V)
I
F
- Forward Current (mA)
Figure 5.
Figure 8. Relative Luminous Intensity vs. Forward Current
2.0
I
V
rel
- Relative Luminous Intensity
red
1.6
I
V
rel
- Relative Luminous Intensity
1.2
red
1.0
0.8
0.6
0.4
0.2
0
600
95 10018
1.2
0.8
0.4
0
0
20
40
60
80
100
620
640
660
680
700
95 10015
T
amb
- Ambient Temperature (°C)
-
Wavelength
(nm)
Figure 6. Rel. Luminous Intensity vs. Ambient Temperature
Figure 9. Relative Intensity vs. Wavelength
2.4
I
V
rel
- Relative Luminous Intensity
red
2.0
1.6
1.2
0.8
0.4
I
FAV
= 10 mA, const.
0
10
95 10262
20
0.5
50
0.2
100
0.1
200
0.05
500
0.02
I
F
(mA)
t
P
/T
1
Figure 7. Rel. Lumin. Intensity vs. Forw. Current/Duty Cycle
Document Number 83001
Rev. 1.5, 18-Sep-07
www.vishay.com
3
TLDR440.
Vishay Semiconductors
PACKAGE DIMENSIONS
in millimeters
95 10951
www.vishay.com
4
Document Number 83001
Rev. 1.5, 18-Sep-07
TLDR440.
Vishay Semiconductors
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating sys-
tems with respect to their impact on the health and safety of our employees and the public, as well as their impact
on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances (ODSs).
The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Pro-
tection Agency (EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting sub-
stances and do not contain such substances.
We reserve the right to make changes to improve technical design
and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or
unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damag-
es, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associ-
ated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Document Number 83001
Rev. 1.5, 18-Sep-07
www.vishay.com
5
CC3200 Kit OURS-SDK-WFB_Explore - by tinnu
[index] [#]CC3200 kit OURS-SDK-WFB_Exploration [#1068424,2843132]CC3200 kit - OURS-SDK-WFB Getting Started [#1068977,2845381]CC3200 kit OURS-SDK-WFB_Exploration 2 [#1068980,2845410]CC3200 kit OURS-SDK...
okhxyyo Wireless Connectivity
Chip Manufacturing 3-Semiconductor Slicing
...
ylyfxzsx Download Centre
RISC-V IDE MRS Usage Notes (IV): Link-time Optimization
Link-time optimization, or LTO (Link Time Optimization), is partially introduced as follows (for details, please refer to the GCC document on FLTO): When called with source code, it generates GIMPLE (...
Moiiiiilter MCU
Xunwei 3399 development board-PCIE 4G module test-compiler
1. First copy ppp-2.4.7.tar.gz to Ubuntu, then execute the following command to decompress it: tar -xvf ppp-2.4.7.tar.gz DecompressionAfter completion, you will get the ppp-2.4.7 directory. Enter the ...
遥寄山川 ARM Technology
【CH579M-R1】+DHT22 temperature and humidity detection
The previous section mainly introduced the use of sensors based on analog signals. This time, let’s talk about the use of digital sensors. There are many types of digital sensors. Such as temperature ...
jinglixixi Domestic Chip Exchange
【BLE 5.3 wireless MCU CH582】13. Power consumption in BLE Peripheral mode
Series of articles: 【BLE 5.3 wireless MCU CH582】1. Getting to know the CH582 development board (unboxing) 【BLE 5.3 wireless MCU CH582】2. MounRiver IDE first experience 【BLE 5.3 wireless MCU CH582】3. N...
freeelectron Domestic Chip Exchange

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号