CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
EH2600TTS-16.000M TR Parametric
Parameter Name
Attribute value
Brand Name
Ecliptek
Is it lead-free?
Lead free
Is it Rohs certified?
conform to
Parts packaging code
SMD 5.0mm x 7.0mm
Contacts
4
Manufacturer packaging code
SMD 5.0mm x 7.0mm
Reach Compliance Code
163
Ageing
5 PPM/YEAR
technology
CMOS
EH2600TTS-16.000M TR Preview
EH2600TTS-16.000M
EH26 00
Series
RoHS Compliant (Pb-free) 3.3V 4 Pad 5mm x 7mm
Ceramic SMD LVCMOS High Frequency Oscillator
Frequency Tolerance/Stability
±100ppm Maximum
Operating Temperature Range
0°C to +70°C
RoHS
Pb
Nominal Frequency
16.000MHz
T TS -16.000M
Pin 1 Connection
Tri-State (High Impedance)
Duty Cycle
50 ±5(%)
ELECTRICAL SPECIFICATIONS
Nominal Frequency
Frequency Tolerance/Stability
16.000MHz
±100ppm Maximum (Inclusive of all conditions: Calibration Tolerance at 25°C, Frequency Stability over the
Operating Temperature Range, Supply Voltage Change, Output Load Change, First Year Aging at 25°C,
Shock, and Vibration)
±5ppm/year Maximum
0°C to +70°C
3.3Vdc ±0.3Vdc
35mA Maximum (No Load)
2.7Vdc Minimum (IOH= -8mA)
0.5Vdc Maximum (IOH= +8mA)
6nSec Maximum (Measured at 20% to 80% of waveform)
50 ±5(%) (Measured at 50% of waveform)
30pF Maximum
CMOS
Tri-State (High Impedance)
70% of Vdd Minimum to enable output, 20% of Vdd Maximum to disable output, No Connect to enable
output.
±250pSec Maximum, ±100pSec Typical
±50pSec Maximum, ±40pSec Typical
10mSec Maximum
-55°C to +125°C
Aging at 25°C
Operating Temperature Range
Supply Voltage
Input Current
Output Voltage Logic High (Voh)
Output Voltage Logic Low (Vol)
Rise/Fall Time
Duty Cycle
Load Drive Capability
Output Logic Type
Pin 1 Connection
Tri-State Input Voltage (Vih and Vil)
Absolute Clock Jitter
One Sigma Clock Period Jitter
Start Up Time
Storage Temperature Range
ENVIRONMENTAL & MECHANICAL SPECIFICATIONS
ESD Susceptibility
Fine Leak Test
Flammability
Gross Leak Test
Mechanical Shock
Moisture Resistance
Moisture Sensitivity
Resistance to Soldering Heat
Resistance to Solvents
Solderability
Temperature Cycling
Vibration
MIL-STD-883, Method 3015, Class 1, HBM: 1500V
MIL-STD-883, Method 1014, Condition A
UL94-V0
MIL-STD-883, Method 1014, Condition C
MIL-STD-883, Method 2002, Condition B
MIL-STD-883, Method 1004
J-STD-020, MSL 1
MIL-STD-202, Method 210, Condition K
MIL-STD-202, Method 215
MIL-STD-883, Method 2003
MIL-STD-883, Method 1010, Condition B
MIL-STD-883, Method 2007, Condition A
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 1 of 5
EH2600TTS-16.000M
MECHANICAL DIMENSIONS (all dimensions in millimeters)
PIN
CONNECTION
Tri-State (High
Impedance)
Ground
Output
Supply Voltage
7.00
±0.15
3
5.00
±0.15
MARKING
ORIENTATION
2
1.4 ±0.1
5.08
±0.15
4
2.20
±0.15
1
1.4 ±0.2
3.68
±0.15
1
2
3
4
LINE MARKING
1
2
3
ECLIPTEK
16.000M
PXXYZZ
P=Configuration Designator
XX=Ecliptek Manufacturing
Code
Y=Last Digit of the Year
ZZ=Week of the Year
1.60 ±0.20
Suggested Solder Pad Layout
All Dimensions in Millimeters
2.0 (X4)
2.2 (X4)
2.88
Solder Land
(X4)
1.81
All Tolerances are ±0.1
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 2 of 5
EH2600TTS-16.000M
OUTPUT WAVEFORM & TIMING DIAGRAM
TRI-STATE INPUT
V
IH
V
IL
CLOCK OUTPUT
V
OH
80% of Waveform
50% of Waveform
20% of Waveform
V
OL
OUTPUT DISABLE
(HIGH IMPEDANCE
STATE)
t
PLZ
Fall
Time
Rise
Time
T
W
T
Duty Cycle (%) = T
W
/T x 100
t
PZL
Test Circuit for CMOS Output
Oscilloscope
Frequency
Counter
+
+
Power
Supply
_
+
Voltage
Meter
_
Current
Meter
_
Supply
Voltage
(V
DD
)
Probe
(Note 2)
Output
0.01µF
(Note 1)
0.1µF
(Note 1)
Ground
C
L
(Note 3)
No Connect
or Tri-State
Note 1: An external 0.1µF low frequency tantalum bypass capacitor in parallel with a 0.01µF high frequency
ceramic bypass capacitor close to the package ground and V
DD
pin is required.
Note 2: A low capacitance (<12pF), 10X attenuation factor, high impedance (>10Mohms), and high bandwidth
(>300MHz) passive probe is recommended.
Note 3: Capacitance value C
L
includes sum of all probe and fixture capacitance.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 3 of 5
EH2600TTS-16.000M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
High Temperature Infrared/Convection
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
3°C/second Maximum
150°C
175°C
200°C
60 - 180 Seconds
3°C/second Maximum
217°C
60 - 150 Seconds
260°C Maximum for 10 Seconds Maximum
250°C +0/-5°C
20 - 40 seconds
6°C/second Maximum
8 minutes Maximum
Level 1
Temperatures shown are applied to body of device.
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 4 of 5
EH2600TTS-16.000M
Recommended Solder Reflow Methods
T
P
Critical Zone
T
L
to T
P
Ramp-up
Ramp-down
Temperature (T)
T
L
T
S
Max
T
S
Min
t
S
Preheat
t 25°C to Peak
t
L
t
P
Time (t)
Low Temperature Infrared/Convection 240°C
T
S
MAX to T
L
(Ramp-up Rate)
Preheat
- Temperature Minimum (T
S
MIN)
- Temperature Typical (T
S
TYP)
- Temperature Maximum (T
S
MAX)
- Time (t
S
MIN)
Ramp-up Rate (T
L
to T
P
)
Time Maintained Above:
- Temperature (T
L
)
- Time (t
L
)
Peak Temperature (T
P
)
Target Peak Temperature (T
P
Target)
Time within 5°C of actual peak (t
p
)
Ramp-down Rate
Time 25°C to Peak Temperature (t)
Moisture Sensitivity Level
Additional Notes
5°C/second Maximum
N/A
150°C
N/A
60 - 120 Seconds
5°C/second Maximum
150°C
200 Seconds Maximum
240°C Maximum
240°C Maximum 1 Time / 230°C Maximum 2 Times
10 seconds Maximum 2 Times / 80 seconds Maximum 1 Time
5°C/second Maximum
N/A
Level 1
Temperatures shown are applied to body of device.
Low Temperature Manual Soldering
185°C Maximum for 10 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)
High Temperature Manual Soldering
260°C Maximum for 5 seconds Maximum, 2 times Maximum. (Temperatures shown are applied to body of device.)
www.ecliptek.com | Specification Subject to Change Without Notice | Rev E 2/17/2010 | Page 5 of 5
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
CMOS, Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD) Quartz Crystal Clock Oscillators XO (SPXO) LVCMOS (CMOS) 3.3Vdc 4 Pad 5.0mm x 7.0mm Ceramic Surface Mount (SMD)
[i=s]This post was last edited by qwqwqw2088 on 2019-2-14 10:52[/i] [size=4] A switching power supply (SMPS) is a very efficient power converter, with a theoretical value close to 100%, and there are ...
The two previous articles ( Register Configuration to Light Up LED and Device Tree Version to Light Up LED ) are essentially about controlling the on and off of LEDs through register configuration.Dir...
I wonder if there are any experts in the forum who are willing to share the following dry goods. Analysis of the internal structure or maintenance guidance of various computer versions of well-known c...
The Smart Car Album includes 97 outstanding entries from previous competitions. It also includes the core content of designing a smart car: navigation, speed detection, angle sensor, self-positioning,...
Introducing the concept of software defined radio (SDR) into experiments
Software model-based, customizable wireless communication platformA software defined radio (SDR) is a wireless device that typi...
Use of SignalTap 1. The role of SignalTap SignalTap is an IP (corresponding to ila of Xilinx) that can display the status of pins in real time. This is based on board-level verification and can effec...[Details]
Many of Tesla's innovations and business plans are always able to astonish the outside world. In addition to settling humans on Mars, last year, Musk proposed to establish a driverless taxi business ...[Details]
This year's "Government Work Report" included the development of new energy storage for the first time. Zhang Fan, deputy to the National People's Congress and director of the Science and Technology I...[Details]
Stepper motors are widely used as display components for automotive instruments because of their characteristics that the angular displacement is proportional to the number of input pulses and ther...[Details]
The "2021 China Automotive Semiconductor Industry Conference" hosted by Gasgoo was held in a grand ceremony. The conference mainly discussed topics such as the current situation of chip shortage in C...[Details]
Stockholm, Sweden, November 24, 2021 ContextVision, a medical technology software company focused on image quality and artificial intelligence, announces the launch of Rivent 3D software, an advanc...[Details]
Openharmony Software Evaluation Guide - Mier based on Rockchip RK3568 development board
The Openharmony Software Evaluation Guide is used to introduce the test steps and evaluati...[Details]
Today, Apple officially launched the newly designed Mac Pro at WWDC 2019. Although it is a brand new design, the 2019 Mac Pro is also a return to Apple's classic "cheese grater" appearance. The inter...[Details]
Use ST's HAL library for development, and the SDRAM used is W9825G6KH-6. W9825G6KH-6 has 4 banks, 13-bit row address, 9-bit column address, and 16-bit bit width. So the capacity of the chip is: 4x81...[Details]
Your cell phone runs out of power after one day of use? Your tablet runs out of power after a while of playing? Are electric cars dangerous? With the improvement of living standards, these correspo...[Details]
The "call" instruction in the ABB robot programming instructions is a very important instruction, which allows the programmer to call another program or subroutine in the program.
Overvi...[Details]
Because the semiconductor manufacturing process is complex, different equipment is required for different links. From the perspective of process classification, semiconductor equipment can be mainly ...[Details]
The current orifice flowmeter uses a unique antifreeze disconnector. When measuring steam, it does not require heating, insulation and condenser, which greatly simplifies the structure and facilita...[Details]
Several logic gate circuits have been discussed above, especially TTL and CMOS circuits. In specific applications, you can choose which device to use according to the requirements. The main technical ...[Details]
According to foreign media reports, Tesla filed a lawsuit against the Australian company Cap-XX in the Texas federal court on July 14, alleging that the latter's supercapacitors used for electric veh...[Details]