EEWORLDEEWORLDEEWORLD

Part Number

Search

U635H16DK45G1

Description
Non-Volatile SRAM, 2KX8, 45ns, CMOS, PDIP24, 0.600 INCH, GREEN, PLASTIC, DIP-24
Categorystorage    storage   
File Size208KB,14 Pages
ManufacturerZentrum Mikroelektronik Dresden AG (IDT)
Environmental Compliance
Download Datasheet Parametric View All

U635H16DK45G1 Overview

Non-Volatile SRAM, 2KX8, 45ns, CMOS, PDIP24, 0.600 INCH, GREEN, PLASTIC, DIP-24

U635H16DK45G1 Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
MakerZentrum Mikroelektronik Dresden AG (IDT)
Parts packaging codeDIP
package instructionDIP, DIP24,.6
Contacts24
Reach Compliance Codeunknown
ECCN codeEAR99
Maximum access time45 ns
JESD-30 codeR-PDIP-T24
JESD-609 codee3
length31.95 mm
memory density16384 bit
Memory IC TypeNON-VOLATILE SRAM
memory width8
Humidity sensitivity level3
Number of functions1
Number of terminals24
word count2048 words
character code2000
Operating modeASYNCHRONOUS
Maximum operating temperature85 °C
Minimum operating temperature-40 °C
organize2KX8
Package body materialPLASTIC/EPOXY
encapsulated codeDIP
Encapsulate equivalent codeDIP24,.6
Package shapeRECTANGULAR
Package formIN-LINE
Parallel/SerialPARALLEL
Peak Reflow Temperature (Celsius)NOT SPECIFIED
power supply5 V
Certification statusNot Qualified
Maximum seat height5.1 mm
Maximum standby current0.003 A
Maximum slew rate0.08 mA
Maximum supply voltage (Vsup)5.5 V
Minimum supply voltage (Vsup)4.5 V
Nominal supply voltage (Vsup)5 V
surface mountNO
technologyCMOS
Temperature levelINDUSTRIAL
Terminal surfaceMATTE TIN
Terminal formTHROUGH-HOLE
Terminal pitch2.54 mm
Terminal locationDUAL
Maximum time at peak reflow temperatureNOT SPECIFIED
width15.24 mm

U635H16DK45G1 Preview

U635H16
PowerStore
2K x 8 nvSRAM
Features
High-performance CMOS non-
volatile static RAM 2048 x 8 bits
25, 35 and 45 ns Access Times
12, 20 and 25 ns Output Enable
Access Times
I
CC
= 15 mA at 200 ns Cycle Time
Automatic STORE to EEPROM
on Power Down using system
capacitance
Software initiated STORE
(STORE Cycle Time < 10 ms)
Automatic STORE Timing
10
6
STORE cycles to EEPROM
100 years data retention in
EEPROM
Automatic RECALL on Power Up
Software RECALL Initiation
(RECALL Cycle Time < 20
µs)
Unlimited RECALL cycles from
EEPROM
Single 5 V
±
10 % Operation
Operating temperature ranges:
0 to 70
°C
-40 to 85
°C
QS 9000 Quality Standard
ESD protection > 2000 V
(MIL STD 883C M3015.7-HBM)
RoHS compliance and Pb- free
Packages: PDIP24 (600 mil)
SOP24 (300 mil)
Description
The U635H16 has two separate
modes of operation: SRAM mode
and nonvolatile mode. In SRAM
mode, the memory operates as an
ordinary static RAM. In nonvolatile
operation, data is transferred in
parallel from SRAM to EEPROM or
from EEPROM to SRAM. In this
mode SRAM functions are disab-
led.
The U635H16 is a fast static RAM
(25, 35, 45 ns), with a nonvolatile
electrically
erasable
PROM
(EEPROM) element incorporated
in each static memory cell. The
SRAM can be read and written an
unlimited number of times, while
independent nonvolatile data resi-
des in EEPROM. Data transfers
from the SRAM to the EEPROM
(the STORE operation) take place
automatically upon power down
using charge stored in system
capacitance.
Transfers from the EEPROM to the
SRAM (the RECALL operation)
take place automatically on power
up. The U635H16 combines the
high performance and ease of use
of a fast SRAM with nonvolatile
data integrity.
STORE cycles also may be initia-
ted under user control via a soft-
ware sequence.
Once a STORE cycle is initiated,
further input or output are disabled
until the cycle is completed.
Because a sequence of addresses
is used for STORE initiation, it is
important that no other read or
write accesses intervene in the
sequence or the sequence will be
aborted.
RECALL cycles may also be initia-
ted by a software sequence.
Internally, RECALL is a two step
procedure. First, the SRAM data is
cleared and second, the nonvola-
tile information is transferred into
the SRAM cells.
The RECALL operation in no way
alters the data in the EEPROM
cells. The nonvolatile data can be
recalled an unlimited number of
times.
Pin Configuration
Pin Description
A7
A6
A5
A4
A3
A2
A1
A0
DQ0
DQ1
DQ2
VSS
1
2
3
4
5
6
7
8
9
10
11
12
24
23
22
21
20
VCC
A8
A9
W
G
A10
E
DQ7
DQ6
DQ5
DQ4
DQ3
Signal Name
A0 - A10
DQ0 - DQ7
E
G
W
VCC
VSS
Signal Description
Address Inputs
Data In/Out
Chip Enable
Output Enable
Write Enable
Power Supply Voltage
Ground
PDIP
19
SOP
18
24
17
16
15
14
13
Top View
1
April 7, 2005
U635H16
Block Diagram
EEPROM Array
32 x (64 x 8)
STORE
A6
A7
A8
A9
Row Decoder
A5
SRAM
Array
32 Rows x
64 x 8 Columns
Store/
Recall
Control
V
CC
V
SS
RECALL
Power
Control
V
CC
DQ0
DQ1
Input Buffers
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
Column I/O
Column Decoder
Software
Detect
A0 - A10
A0 A1 A2 A3 A4 A10
G
E
W
Truth Table for SRAM Operations
Operating Mode
Standby/not selected
Internal Read
Read
Write
* H or L
E
H
L
L
L
W
*
G
*
DQ0 - DQ7
High-Z
High-Z
Data Outputs Low-Z
Data Inputs High-Z
H
H
L
H
L
*
Characteristics
All voltages are referenced to V
SS
= 0 V (ground).
All characteristics are valid in the power supply voltage range and in the operating temperature range specified.
Dynamic measurements are based on a rise and fall time of
5 ns, measured between 10 % and 90 % of V
I
, as well as input levels of
V
IL
= 0 V and V
IH
= 3 V. The timing reference level of all input and output signals is 1.5 V,
with the exception of the t
dis
-times and t
en
-times, in which cases transition is measured
±
200 mV from steady-state voltage.
Absolute Maximum Ratings
a
Power Supply Voltage
Input Voltage
Output Voltage
Power Dissipation
Operating Temperature
Storage Temperature
a:
Symbol
V
CC
V
I
V
O
P
D
Min.
-0.5
-0.3
-0.3
Max.
7
V
CC
+0.5
V
CC
+0.5
1
Unit
V
V
V
W
°C
°C
°C
C-Type
K-Type
T
a
T
stg
0
-40
-65
70
85
150
Stresses greater than those listed under „Absolute Maximum Ratings“ may cause permanent damage to the device. This is a stress
rating only, and functional operation of the device at condition above those indicated in the operational sections of this specification is
not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2
April 7, 2005
U635H16
Recommended
Operating Conditions
Power Supply Voltage
Input Low Voltage
Input High Voltage
Symbol
V
CC
V
IL
V
IH
-2 V at Pulse Width
10 ns permitted
Conditions
Min.
4.5
-0.3
2.2
Max.
5.5
0.8
V
CC
+0.3
Unit
V
V
V
C-Type
DC Characteristics
Operating Supply Current
b
Symbol
I
CC1
V
CC
V
IL
V
IH
t
c
t
c
t
c
Average Supply Current during
STORE
c
I
CC2
V
CC
E
W
V
IL
V
IH
V
CC
V
IL
V
IH
V
CC
E
t
c
t
c
t
c
V
CC
W
V
IL
V
IH
V
CC
E
V
IL
V
IH
Conditions
Min.
= 5.5 V
= 0.8 V
= 2.2 V
= 25 ns
= 35 ns
= 45 ns
= 5.5 V
0.2 V
V
CC
-0.2 V
0.2 V
V
CC
-0.2 V
= 4.5 V
= 0.2 V
V
CC
-0.2 V
= 5.5 V
= V
IH
= 25 ns
= 35 ns
= 45 ns
= 5.5 V
V
CC
-0.2 V
0.2 V
V
CC
-0.2 V
= 5.5 V
V
CC
-0.2 V
0.2 V
V
CC
-0.2 V
90
80
75
6
Max.
K-Type
Unit
Min.
Max.
95
85
80
7
mA
mA
mA
mA
Average Supply Current during
PowerStore
Cycle
c
Standby Supply Current
d
(Cycling TTL Input Levels)
I
CC4
4
4
mA
I
CC(SB)1
30
23
20
15
34
27
23
15
mA
mA
mA
mA
Operating Supply Current
at t
cR
= 200 ns
b
(Cycling CMOS Input Levels)
Standby Supply Curent
d
(Stable CMOS Input Levels)
I
CC3
I
CC(SB)
3
3
mA
b: I
CC1
and I
CC3
are depedent on output loading and cycle rate. The specified values are obtained with outputs unloaded.
The current I
CC1
is measured for WRITE/READ - ratio of 1/2.
c: I
CC2
and I
CC4
are the average currents required for the duration of the respective STORE cycles (STORE Cycle Time).
d: Bringing E
V
IH
will not produce standby current levels until any nonvolatile cycle in progress has timed out. See MODE SELECTION
table. The current I
CC(SB)1
is measured for WRITE/READ - ratio of 1/2.
April 7, 2005
3
U635H16
C-Type
DC Characteristics
Symbol
V
CC
I
OH
I
OL
V
CC
V
OH
V
OL
V
CC
High
Low
Output Leakage Current
High at Three-State- Output
Low at Three-State- Output
I
OHZ
I
OLZ
I
IH
I
IL
V
IH
V
IL
V
CC
V
OH
V
OL
Conditions
Min.
Output High Voltage
Output Low Voltage
Output High Current
Output Low Current
Input Leakage Current
V
OH
V
OL
I
OH
I
OL
= 4.5 V
=-4 mA
= 8 mA
= 4.5 V
= 2.4 V
= 0.4 V
= 5.5 V
= 5.5 V
= 0V
= 5.5 V
= 5.5 V
= 0V
1
-1
-1
1
µA
µA
1
-1
-1
1
µA
µA
2.4
0.4
-4
8
8
Max.
Min.
2.4
0.4
-4
Max.
V
V
mA
mA
K-Type
Unit
SRAM Memory Operations
Symbol
Alt.
t
AVAV
t
AVQV
t
ELQV
t
GLQV
t
EHQZ
t
GHQZ
t
ELQX
t
GLQX
t
AXQX
t
ELICCH
t
EHICCL
IEC
t
cR
t
a(A)
t
a(E)
t
a(G)
t
dis(E)
t
dis(G)
t
en(E)
t
en(G)
t
v(A)
t
PU
t
PD
5
0
3
0
25
25
35
45
Unit
Min. Max. Min. Max. Min. Max.
25
25
25
12
13
13
5
0
3
0
35
35
35
35
20
17
17
5
0
3
0
45
45
45
45
25
20
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Switching Characteristics
No.
Read Cycle
1
2
3
4
5
6
7
8
9
Read Cycle Time
f
Address Access Time to Data Valid
g
Chip Enable Access Time to Data Valid
Output Enable Access Time to Data Valid
E HIGH to Output in High-Z
h
G HIGH to Output in High-Z
h
E LOW to Output in Low-Z
G LOW to Output in Low-Z
Output Hold Time after Address Change
10 Chip Enable to Power Active
e
11 Chip Disable to Power Standby
d, e
e:
f:
g:
h:
Parameter guaranteed but not tested.
Device is continuously selected with E and G both LOW.
Address valid prior to or coincident with E transition LOW.
Measured
±
200 mV from steady state output voltage.
4
April 7, 2005
U635H16
Read Cycle 1: Ai-controlled (during Read cycle: E = G = V
IL
, W = V
IH
)
f
t
cR
(1)
Ai
DQi
Output
Previous Data Valid
t
v(A)
(9)
Address Valid
t
a(A)
(2)
Output Data Valid
Read Cycle 2: G-, E-controlled (during Read cycle: W = V
IH
)
g
t
cR
(1)
Ai
E
G
DQi
Output
High Impedance
t
PU
(10)
ACTIVE
STANDBY
Address Valid
t
a(A)
(2)
t
a(E)
(3)
t
en(E)
(7)
t
a(G)
(4)
t
en(G)
(8)
Output Data Valid
t
dis(G)
(6)
t
PD
(11)
t
dis(E)
(5)
I
CC
Switching Characteristics
No.
Write Cycle
12 Write Cycle Time
13 Write Pulse Width
14 Write Pulse Width Setup Time
15 Address Setup Time
16 Address Valid to End of Write
17 Chip Enable Setup Time
18 Chip Enable to End of Write
19 Data Setup Time to End of Write
20 Data Hold Time after End of Write
21 Address Hold after End of Write
22 W LOW to Output in High-Z
h, i
23 W HIGH to Output in Low-Z
Symbol
Alt. #1
t
AVAV
t
WLWH
t
WLEH
t
AVWL
t
AVWH
t
ELWH
t
ELEH
t
DVWH
t
WHDX
t
WHAX
t
WLQZ
t
WHQX
t
DVEH
t
EHDX
t
EHAX
t
AVEL
t
AVEH
Alt. #2
t
AVAV
IEC
t
cW
t
w(W)
t
su(W)
t
su(A)
t
su(A-WH)
t
su(E)
t
w(E)
t
su(D)
t
h(D)
t
h(A)
t
dis(W)
t
en(W)
5
25
35
45
Unit
Min. Max. Min. Max. Min. Max.
25
20
20
0
20
20
20
12
0
0
10
5
35
30
30
0
30
30
30
18
0
0
13
5
45
35
35
0
35
35
35
20
0
0
15
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
April 7, 2005
5
[RVB2601 Creative Application Development] Study Notes 1 - Development Environment Construction and New Project
1. IntroductionJianchi CDK is an integrated development environment launched by Pingtou Ge that is professional for IoT development. This integrated development environmentis based on Pingtou Ge's 152...
zhengyad XuanTie RISC-V Activity Zone
Choosing the Correct Thermistor for Your Temperature Sensor
[i=s]This post was last edited by qwqwqw2088 on 2020-5-7 08:44[/i]When faced with thousands of thermistor types, selecting the right one can be quite overwhelming. Here are some of the important param...
qwqwqw2088 Analogue and Mixed Signal
EEprom write speed is slow
I'm using an atmel chip recently. Its internal eeprom writes data very quickly for the first time, but becomes very slow to write data to the same location afterwards. It takes about 8s to write 5K da...
zhuzd Embedded System
CircuitPython 7.0.0 released
Notable additions to 7.0.0 since 6.3.0Support for the CircuitPython development workflow over BLE. Camera support on ESP32S2. qrio: QR code decoding. The keypad key-scanning module. Run-time customiza...
dcexpert MicroPython Open Source section
They are all six non-gates. This power supply can be used even if it is connected reversely, but it cannot be replaced.
RT, I'd like to share a board made by my dad's company. At the beginning of the development, they used a part that they had some stock on hand. Motorola's six-NOT gate chip was finished, but it was di...
小潜艇 PCB Design
PCB layout
Is it necessary to place copper between pairs of differential lines on a double-sided board to isolate crosstalk? Do I still need to place copper if the spacing between several sets of differential li...
asionl PCB Design

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号