PRELIMINARY PRODUCT INFORMATION
MOS FIELD EFFECT TRANSISTOR
NP88N04MHE,NP88N04NHE
SWITCHING
N-CHANNEL POWER MOSFET
DESCRIPTION
These products are N-channel MOS Field Effect Transistors designed for high current switching applications.
ORDERING INFORMATION
PART NUMBER
NP88N04MHE-S18-AY
NP88N04NHE-S18-AY
Note
Note
LEAD PLATING
Pure Sn (Tin)
Pure Sn (Tin)
PACKING
Tube 50 p/tube
Tube 50 p/tube
PACKAGE
TO-220 (MP-25K) typ. 1.9 g
TO-262 (MP-25SK) typ. 1.8 g
Note
Under development
FEATURES
•
Channel temperature 175 degree rated
•
Super low on-state resistance
R
DS(on)
= 4.3 mΩ MAX. (V
GS
= 10 V, I
D
= 44 A)
•
Low C
iss
: C
iss
= 7300 pF TYP.
•
Built-in gate protection diode
(TO-220)
ABSOLUTE MAXIMUM RATINGS (T
A
= 25°C)
Drain to Source Voltage (V
GS
= 0 V)
Gate to Source Voltage (V
DS
= 0 V)
Drain Current (DC) (T
C
= 25°C)
Drain Current (pulse)
Note2
Note1
V
DSS
V
GSS
I
D(DC)
I
D(pulse)
P
T1
P
T2
T
ch
T
stg
40
±20
±88
±352
1.8
288
175
−55
to
+175
75/88
562/232
V
V
A
A
W
W
°C
°C
A
mJ
(TO-262)
Total Power Dissipation (T
A
= 25°C)
Total Power Dissipation (T
C
= 25°C)
Channel Temperature
Storage Temperature
Single Avalanche Current
Single Avalanche Energy
Note3
Note3
I
AS
E
AS
Notes 1.
Calculated constant current according to MAX. allowable channel temperature.
2.
PW
≤
10
μ
s, Duty cycle
≤
1%
3.
Starting T
ch
= 25°C, V
DD
= 20 V, R
G
= 25
Ω,
V
GS
= 20
→
0 V (see Figure 4.)
THERMAL RESISTANCE
Channel to Case Thermal Resistance
Channel to Ambient Thermal Resistance
R
th(ch-C)
R
th(ch-A)
0.52
83.3
°C/W
°C/W
The information contained in this document is being issued in advance of the production cycle for the
product. The parameters for the product may change before final production or NEC Electronics
Corporation, at its own discretion, may withdraw the product prior to its production.
Not all products and/or types are availabe in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
Document No. D18488EJ1V0PM00 (1st edition)
Date Published November 2006 NS CP(K)
Printed in Japan
2006
NP88N04MHE,NP88N04NHE
ELECTRICAL CHARACTERISTICS (T
A
= 25°C)
CHARACTERISTICS
Zero Gate Voltage Drain Current
Gate Leakage Current
Gate to Source Threshold Voltage
Forward Transfer Admittance
Drain to Source On-state Resistance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Total Gate Charge
Gate to Source Charge
Gate to Drain Charge
Body Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
SYMBOL
I
DSS
I
GSS
V
GS(th)
| y
fs
|
R
DS(on)
C
iss
C
oss
C
rss
t
d(on)
t
r
t
d(off)
t
f
Q
G
Q
GS
Q
GD
V
F(S-D)
t
rr
Q
rr
V
DD
= 32 V
V
GS
= 10 V
I
D
= 88 A
I
F
= 88 A, V
GS
= 0 V
I
F
= 88 A, V
GS
= 0 V
di/dt = 100 A/
μ
s
TEST CONDITIONS
V
DS
= 40 V, V
GS
= 0 V
V
GS
=
±20
V, V
DS
= 0 V
V
DS
= V
GS
, I
D
= 250
μ
A
V
DS
= 10 V, I
D
= 44 A
V
GS
= 10 V, I
D
= 44 A
V
DS
= 25 V
V
GS
= 0 V
f = 1 MHz
V
DD
= 20 V, I
D
= 44 A
V
GS
= 10 V
R
G
= 1
Ω
2.0
30
3.0
60
3.4
7300
1400
620
38
27
110
32
120
30
43
0.95
64
99
4.3
11000
2100
1120
84
68
220
80
180
MIN.
TYP.
MAX.
10
±10
4.0
UNIT
μ
A
μ
A
V
S
mΩ
pF
pF
pF
ns
ns
ns
ns
nC
nC
nC
V
ns
nC
TEST CIRCUIT 1 AVALANCHE CAPABILITY
D.U.T.
R
G
= 25
Ω
PG.
V
GS
= 20
→
0 V
50
Ω
TEST CIRCUIT 2 SWITCHING TIME
D.U.T.
L
V
DD
PG.
R
G
V
GS
R
L
V
DD
V
DS
90%
90%
10%
10%
V
GS
Wave Form
0
10%
V
GS
90%
BV
DSS
I
AS
I
D
V
DD
V
DS
V
GS
0
τ
τ
= 1
μ
s
Duty Cycle
≤
1%
V
DS
V
DS
Wave Form
0
t
d(on)
t
on
t
r
t
d(off)
t
off
t
f
Starting T
ch
TEST CIRCUIT 3 GATE CHARGE
D.U.T.
I
G
= 2 mA
PG.
50
Ω
R
L
V
DD
2
Preliminary Product Information D18488EJ1V0PM
NP88N04MHE,NP88N04NHE
TYPICAL CHARACTERISTICS (T
A
= 25°C)
Figure1. DERATING FACTOR OF FORWARD BIAS
SAFE OPERATING AREA
Figure2. TOTAL POWER DISSIPATION vs.
CASE TEMPERATURE
350
dT - Percentage of Rated Power - %
P
T
- Total Power Dissipation - W
100
80
60
40
20
0
300
250
200
150
100
50
0
0
25
50
75
100 125 150 175 200
0
25
50
75
100 125 150 175 200
T
C
- Case Temperature - ˚C
T
C
- Case Temperature -
˚C
Figure3. FORWARD BIAS SAFE OPERATING AREA
1000
d
ite V)
Lim 10
)
on S
=
S(
I
D(DC)
R
D
t V
G
(a
Figure4. SINGLE AVALANCHE ENERGY
DERATING FACTOR
800
E
AS
- Single Avalanche Energy - mJ
I
D(pulse)
10
Po
Lim wer DC
ite Dis
d
sip
PW
10
0
μ
s
=
10
μ
s
700
600 562 mJ
500
400
300
200
100
0
25
50
75
100
125
150
175
232 mJ
I
AS
= 75 A
88 A
I
D
- Drain Current - A
100
1m
ms
s
ati
on
10
1
Single pulse
T
C
= 25˚C
0.1
0.1
1
10
100
V
DS
- Drain to Source Voltage - V
Starting T
ch
- Starting Channel Temperature -
˚C
Figure5. TRANSIENT THERMAL RESISTANCE vs. PULSE WIDTH
1000
r
th(t)
- Transient Thermal Resistance -
˚C/W
100
R
th(ch-A)
= 83.3˚C/W
10
1
R
th(ch-C)
= 0.52˚C/W
0.1
Single pulse
T
C
= 25˚C
100
μ
1m
10 m
100 m
1
10
100
1000
0.01
10
μ
PW - Pulse Width - s
Preliminary Product Information D18488EJ1V0PM
3
NP88N04MHE,NP88N04NHE
Figure6. FORWARD TRANSFER CHARACTERISTICS
100
Pulsed
500
I
D
- Drain Current - A
Figure7. DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
10
I
D
- Drain Current - A
1
T
A
=
−50˚C
25˚C
75˚C
175˚C
400
V
GS
=10 V
300
200
100
0.1
0.01
2
3
4
5
V
DS
= 10 V
6
7
0
Pulsed
0
0.5
1.0
1.5
2.0
V
DS
- Drain to Source Voltage - V
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-state Resistance - mΩ
| y
fs
| - Forward Transfer Admittance - S
Figure8. FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
100
V
DS
= 10V
Pulsed
10
T
A
= 175˚C
75˚C
25˚C
−50
C
Figure9. DRAIN TO SOURCE ON-STATE RESISTANCE vs.
GATE TO SOURCE VOLTAGE
10
Pulsed
1
5
I
D
= 44 A
0.1
0.01
0.01
0.1
1
10
100
0
0
5
10
15
20
I
D
- Drain Current - A
V
GS
- Gate to Source Voltage - V
R
DS(on)
- Drain to Source On-state Resistance - mΩ
15
Pulsed
V
GS(th)
- Gate to Source Threshold Voltage - V
Figure10. DRAIN TO SOURCE ON-STATE
RESISTANCE vs. DRAIN CURRENT
Figure11. GATE TO SOURCE THRESHOLD VOLTAGE vs.
CHANNEL TEMPERATURE
4.0
V
DS
= V
GS
I
D
= 250
μ
A
3.0
10
2.0
5
V
GS
= 10 V
1.0
0
0
1
10
100
1000
−50
0
50
100
150
I
D
- Drain Current - A
T
ch
- Channel Temperature -
˚C
4
Preliminary Product Information D18488EJ1V0PM
NP88N04MHE,NP88N04NHE
R
DS(on)
- Drain to Source On-state Resistance - mΩ
Figure12. DRAIN TO SOURCE ON-STATE
RESISTANCE vs. CHANNEL TEMPERATURE
9
8
7
6
5
4
3
2
1
0
- 50
0
50
100
I
D
= 44 A
150
V
GS
= 10 V
Figure13. SOURCE TO DRAIN DIODE
FORWARD VOLTAGE
1000
I
SD
- Diode Forward Current - A
Pulsed
V
GS
= 10 V
100
0V
10
1
0.1
0
T
ch
- Channel Temperature -
˚C
1.0
0.5
V
SD
- Source to Drain Voltage - V
1.5
Figure14. CAPACITANCE vs.
DRAIN TO SOURCE VOLTAGE
100000
C
iss
, C
oss
, C
rss
- Capacitance - pF
t
d(on)
, t
r
, t
d(off)
, t
f
- Switching Time - ns
Figure15. SWITCHING CHARACTERISTICS
1000
t
f
t
d(off)
100
t
d(on)
t
r
10
V
GS
= 0 V
f = 1 MHz
10000
C
iss
1000
C
oss
C
rss
100
0.1
1
10
100
1
0.1
1
10
100
V
DS
- Drain to Source Voltage - V
I
D
- Drain Current - A
Figure16. REVERSE RECOVERY TIME vs.
DRAIN CURRENT
1000
t
rr
- Reverse Recovery Time - ns
Figure17. DYNAMIC INPUT/OUTPUT CHARACTERISTICS
100
V
DS
- Drain to Source Voltage - V
90
80
70
60
50
40
30
20
10
0
I
D
= 88 A
0
20
40
60
80
100
120
Q
G
- Gate Charge - nC
V
DS
V
DD
= 32 V
20 V
8V
8
7
V
GS
6
5
4
3
2
1
0
100
10
1
0.1
1.0
10
100
I
F
- Drain Current - A
Preliminary Product Information D18488EJ1V0PM
5
V
GS
- Gate to Source Voltage - V
di/dt = 100 A/
μ
s
V
GS
= 0 V
10
9