LTC2927C ................................................ 0°C to 70°C
LTC2927I.............................................. –40°C to 85°C
Storage Temperature Range................... –65°C to 150°C
Lead Temperature (Soldering, 10 sec) .................. 300°C
Supply Voltage (V
CC
) ................................. –0.3V to 10V
Input Voltages
ON ......................................................... –0.3V to 10V
TRACK .........................................–0.3V to V
CC
+ 0.3V
Output Voltages
FB,
SDO
................................................. –0.3V to 10V
RAMP RAMPBUF .........................–0.3V to V
CC
+ 0.3V
,
PIN CONFIGURATION
TOP VIEW
TOP VIEW
ON 1
RAMP 2
RAMPBUF 3
TRACK 4
9
8 V
CC
7 SDO
6 FB
5 GND
V
CC
1
SDO 2
FB 3
GND 4
8 ON
7 RAMP
6 RAMPBUF
5 TRACK
DDB PACKAGE
8-LEAD (3mm
×
2mm) PLASTIC DFN
EXPOSED PAD (PIN 9) PCB GND, CONNECTION OPTIONAL
T
JMAX
= 125°C,
θ
JA
= 76°C/W
ORDER INFORMATION
LEAD FREE FINISH
LTC2927CDDB#PBF
LTC2927IDDB#PBF
LTC2927CTS8#PBF
LTC2927ITS8#PBF
LEAD BASED FINISH
LTC2927CDDB
LTC2927IDDB
LTC2927CTS8
LTC2927ITS8
TAPE AND REEL
LTC2927CDDB#TRPBF
LTC2927IDDB#TRPBF
LTC2927CTS8#TRPBF
LTC2927ITS8#TRPBF
TAPE AND REEL
LTC2927CDDB#TR
LTC2927IDDB#TR
LTC2927CTS8#TR
LTC2927ITS8#TR
PART MARKING*
LBQH
LBQH
LTBQJ
LTBQJ
PART MARKING*
LBQH
LBQH
LTBQJ
LTBQJ
PACKAGE DESCRIPTION
8-Lead (3mm
×
2mm) Plastic DFN
8-Lead (3mm
×
2mm) Plastic DFN
8-Lead Plastic TSOT-23
8-Lead Plastic TSOT-23
PACKAGE DESCRIPTION
8-Lead (3mm
×
2mm) Plastic DFN
8-Lead (3mm
×
2mm) Plastic DFN
8-Lead Plastic TSOT-23
8-Lead Plastic TSOT-23
TEMPERATURE RANGE
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
TEMPERATURE RANGE
0°C to 70°C
–40°C to 85°C
0°C to 70°C
–40°C to 85°C
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to:
http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to:
http://www.linear.com/tapeandreel/
2
U
W W
W
TS8 PACKAGE
8-LEAD PLASTIC TSOT-23
T
JMAX
= 125°C,
θ
JA
= 250°C/W
2927fb
LTC2927
ELECTRICAL CHARACTERISTICS
SYMBOL
V
CC
I
CC
V
CC(UVLO)
ΔV
CC(UVHYST)
V
ON(TH)
ΔV
ON(HYST)
I
ON
I
RAMP
V
RAMPBUF(OL)
V
RAMPBUF(OH)
V
OS
I
ERROR(%)
V
TRACK
I
FB(LEAK)
V
FB(CLAMP)
V
SDO(OL)
PARAMETER
Supply Voltage
Supply Current
Supply Undervoltage Lockout
Supply Undervoltage Lockout Hysteresis
ON Pin Threshold Voltage
ON Pin Hysteresis
ON Pin Input Current
RAMP Pin Input Current
RAMPBUF Output Low Voltage
RAMPBUF Output High Voltage,
V
RAMPBUF(OH)
= V
CC
– V
RAMPBUF
Ramp Buffer Offset,
V
OS
= V
RAMPBUF
– V
RAMP
I
FB
to I
TRACK
Current Mismatch
I
ERROR(%)
= (I
FB
– I
TRACK
)/I
TRACK
TRACK Pin Voltage
FB Pin Leakage Current
FB Pin Clamp Voltage
SDO
Output Low Voltage
V
ON
= 1.2V, V
CC
= 5.5V
0V < V
RAMP
< V
CC
, Ramp On
0V < V
RAMP
< V
CC
, Ramp Off
I
RAMPBUF
= 1mA
I
RAMPBUF
= –1mA
V
RAMP
= V
CC
/2, I
RAMPBUF
= 0mA
I
TRACK
= –10μA
I
TRACK
= –1mA
I
TRACK
= –10μA
I
TRACK
= –1mA
V
FB
= 2V, V
CC
= 5.5V
1μA < I
FB
< 1mA
I
SDO
= 1mA, V
CC
= 2.3V
l
l
l
l
l
l
l
l
l
The
l
denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at T
A
= 25°C. 2.9V < V
CC
< 5.5V unless otherwise noted (Note 2).
CONDITIONS
l
MIN
2.9
0.25
3
2.2
1.210
30
–9
9
l
l
l
l
l
l
TYP
0.56
3.6
2.5
25
1.230
75
0
–10
10
20
45
MAX
5.5
1.2
4.2
2.7
1.250
150
±100
–11
11
100
150
30
±5
±5
0.82
0.82
±100
2.3
0.4
UNITS
V
mA
mA
V
mV
V
mV
nA
μA
μA
mV
mV
mV
%
%
V
V
nA
V
V
I
FB
= 0mA, I
TRACK
= 0mA
I
FB
= –1mA, I
TRACK
= –1mA, I
RAMPBUF
= –1mA
V
CC
Rising
V
ON
Rising
–30
0
0
0
0.77
0.77
1.5
0.800
0.800
±1
2
0.1
Note 1:
Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2:
All currents into the device pins are positive; all currents out of
device pins are negative. All voltages are referenced to ground unless
otherwise specified.
TYPICAL PERFORMANCE CHARACTERISTICS
I
CC
vs V
CC
750
I
TRACK
= I
FB
= 0mA
I
RAMBUF
= 0mA
4.70
I
CC
vs V
CC
I
TRACK
= I
FB
= –1mA
I
RAMBUF
= –2mA
820
V
TRACK
vs Temperature
700
4.65
V
TRACK
(mV)
2.5
3.0
3.5
4.0 4.5
V
CC
(V)
5.0
5.5
6.0
2927 G02
810
600
I
CC
(mA)
I
CC
(μA)
650
4.60
800
4.55
790
550
4.50
780
500
2.5
3.0
3.5
4.0 4.5
V
CC
(V)
5.0
5.5
6.0
2927 G01
4.45
770
–50
–25
0
25
50
TEMPERATURE (°C)
75
100
2927 G03
2927fb
3
LTC2927
TYPICAL PERFOR A CE CHARACTERISTICS
V
ON(TH)
vs Temperature
1.240
1.235
24
1.230
V
ON(TH)
(V)
1.225
1.220
1.215
12
1.210
–50
–25
0
25
50
TEMPERATURE (°C)
75
100
2927 G04
V
RAMPBUF(OH)
(mV)
V
RAMPBUF(OL)
(mV)
MAX I
TRACK
vs V
CC
60
V
TRACK
= 0V
5
50
I
TRACK
(mA)
40
3
V
SDO(OL)
(V)
ERROR (%)
30
20
10
2.5
3.0
3.5
4.0 4.5
V
CC
(V)
5.0
PIN FUNCTIONS
TSOT/DFN Packages
V
CC
(Pin 1/Pin 8):
Supply Voltage Input. Operating range
is from 2.9V to 5.5V. An undervoltage lockout asserts
SDO
until V
CC
> 2.5V. V
CC
should be bypassed to GND with a
0.1μF capacitor.
SDO
(Pin 2/Pin 7):
Slave Supply Shutdown Output.
SDO
is an open-drain output that holds the shutdown (RUN/SS)
pin of the slave supply low until the V
CC
pin is pulled above
2.5V, and the ON pin is pulled above 1.23V, or RAMP is
above 200mV.
SDO
is pulled low again when both RAMP
< 200mV and ON < 1.23V. If the slave supply is capable
of operating with an input supply that is lower than the
LTC2927’s minimum operating voltage of 2.9V, the
SDO
pin can be used to hold off the slave supply. Tie the
SDO
pin to GND if unused.
FB (Pin 3/Pin 6):
Feedback Control Output. FB pulls up
on the feedback node of the slave supply. Tracking is
achieved by mirroring the current from TRACK into FB.
A resistive divider connecting RAMPBUF and TRACK will
force the output voltage of the slave supply to track RAMP
.
To prevent damage to the slave supply, the FB pin will not
force the slave’s feedback node above 2.3V. In addition,
the LTC2927 will not actively sink current from this node,
even when it is unpowered.
2927fb
4
U W
5.5
V
RAMPBUF(OL)
vs Temperature
28
26
65
22
20
18
16
14
45
10
–50
60
55
50
70
V
RAMPBUF(OH)
vs Temperature
–25
0
25
50
TEMPERATURE (°C)
75
100
2927 G05
40
–50
–25
0
25
50
TEMPERATURE (°C)
75
100
2927 G06
Tracking Cell Error vs I
TRACK
ERROR =
4
V
TRACK
I
•
FB
–1
0.8V
I
TRACK
1.0
V
SDO(OL)
vs V
CC
0.8
0.6
I
SDO
= 5mA
0.4
2
1
0.2
I
SDO
= 10μA
0
1
2
3
V
CC
(V)
4
5
2927 G0
6.0
2927 G07
0
1
2
3
I
TRACK
(mA)
4
5
2927 G0
0.0
LTC2927
PI FU CTIO S
TSOT/DFN Packages
GND (Pin 4/Pin 5):
Device Ground.
TRACK (Pin 5/Pin 4):
Tracking Control Input. A resistive
voltage divider between RAMPBUF and TRACK determines
the tracking profile of the slave supply. TRACK servos to
0.8V, and the current supplied at TRACK is mirrored at FB.
The TRACK pin is capable of supplying at least 1mA when
V
CC
= 2.9V. Under short circuit conditions, the TRACK pin
is capable of supplying up to 70mA. Do not connect to
GND for extended periods. Limit the capacitance at the
TRACK pin to less than 25pF
.
RAMPBUF (Pin 6/Pin 3):
Ramp Buffer Output. Provides
a low impedance buffered version of the signal on the
RAMP pin. This buffered output drives the resistive volt-
age divider that connects to the TRACK pin. Limit the
capacitance at the RAMPBUF pin to less than 100pF Float
.
RAMPBUF if unused.
RAMP (Pin 7/Pin 2):
Ramp Buffer Input. The RAMP pin is
the input to the voltage buffer whose output drives a resis-
tive voltage divider connected to the TRACK pin. Connect
this input to a capacitor to set the ramp voltage generated
from internal 10μA pull-up or pull-down currents. RAMP
can also be connected to an external ramping signal for
tracking. Ground RAMP if unused.
ON (Pin 8/Pin 1):
On Control Input. The voltage level of
the ON pin relative to its 1.23V threshold (with 75mV
hysteresis) controls the tracking direction of the LTC2927.
An active high causes a 10μA pull-up current to flow at
the RAMP pin, which charges an external capacitor. An
active low at the ON pin causes a 10μA pull-down cur-
rent at the RAMP pin to discharge the external capacitor
[i=s]This post was last edited by Li Baiyi on 2019-12-8 20:47[/i]Smart Home
Project Introduction: 10.1-inch touch screen and mobile terminal synchronously control home appliances
System Block Diagram:...
Generally speaking, on most platforms, a byte is 8 bits, char occupies 8 bits of space, and int occupies 32 bits of space. However, on TI C2000 DSP, this is not the case. On C2000 series DSP, byte = 1...
Electromagnetic interference (EMI) has always been a challenge for automotive power end equipment. With the rise of mild hybrid electric vehicle (MHEV) solutions, EMI becomes even more challenging as ...
This is the block diagram of the dead zone circuit. The sampling signal sent by the Hall sensor is input through the pin header JP2. The signal is input into the Butterworth filter circuit through the...
1. Gigabit RISC-V's GD32VF103 development board and Chinese data sheet and examples
2. Gigabit RISC-V GD32VF103 debugging tool
3. GD32VF103 modified firmware library for Gigabit RISC-V core
4. GD32VF1...
First, let's take a look at the working process of USB.
When a USB device is connected to the host, the host begins to enumerate the USB device and sends a command to the USB device to obtain t...[Details]
The data read by the STM8 I/O port simulation I2C is incorrect STM8 I/O port simulates I2C #define I2C_ERR 0 #define I2C_CRR 1 #define I2CDataIn 1 #define I2CDataOut 0 #...[Details]
According to Reuters, the US Federal Communications Commission (FCC) may ban the US operations of three Chinese state-owned telecommunications companies on the grounds of national security risks. The...[Details]
Take the regular channel of STM32 ADC as an example (the injection channel is similar): As shown in the figure, the regular channel of STM32 ADC can be triggered by any of the above 6 signals. We u...[Details]
In order to ensure the operation quality of the DCS system, the instrument signals input into the system must be accurate. Therefore, the installation must be carried out in strict accordance with ...[Details]
I've been learning how to light a lamp with stm32 these two days, but it won't light up. I encountered two problems. 1: When setting the clock, you need to click once to enable it. 2: Students usi...[Details]
The differential correction signal is sent to the GPS signal (DGPS) through a low-frequency (285~325kHz) transmitter, and the transmission data rate is 100bps or 200bps. This modulation is minimum ...[Details]
Google Pixel 5 renderings were released by Pricebaba in collaboration with tipster OnLeaks. These high-resolution images show the complete design of the upcoming Google Pixel 5 smartphone, whi...[Details]
This article first introduces the main electrodeless fluorescent lamp products on the domestic market, and analyzes the practical application and energy-saving effect of such products. At the same tim...[Details]
The main purpose of this car battery heater circuit is to ensure that the battery can be charged and discharged satisfactorily even at extremely low temperatures.
Circuit Description
...[Details]
High-precision power analyzers are sometimes called broadband power analyzers or variable frequency power analyzers according to their characteristics. High-precision power analyzers are new measurem...[Details]
According to the China Central Radio and Television Economic Voice "World Finance" report, the Standing Committee of the Political Bureau of the CPC Central Committee pointed out at a meeting that ...[Details]
Variable valve timing technology has almost become a standard configuration for today's engines. In order to further tap the potential of traditional internal combustion engines, engineers have d...[Details]
Nordic expands commercial support for nRF9160 SiP cellular IoT customers with cloud location services
nRF Cloud Location Services enables customers to get reliable support for a broa...[Details]
Perhaps the biggest challenge facing portable power designers is delivering power to modern high-performance CPUs. Recently, CPU supply currents have doubled every two years. In fact, today’s por...[Details]