D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
FQP10N60C / FQPF10N60C 600V N-Channel MOSFET
April 2007
QFET
FQP10N60C / FQPF10N60C
600V N-Channel MOSFET
Features
• 9.5A, 600V, R
DS(on)
= 0.73Ω @V
GS
= 10 V
• Low gate charge ( typical 44 nC)
• Low Crss ( typical 18 pF)
• Fast switching
• 100% avalanche tested
• Improved dv/dt capability
®
Description
These N-Channel enhancement mode power field effect transis-
tors are produced using Fairchild’s proprietary, planar stripe,
DMOS technology.
This advanced technology has been especially tailored to mini-
mize on-state resistance, provide superior switching perfor-
mance, and withstand high energy pulse in the avalanche and
commutation mode. These devices are well suited for high effi-
ciency switched mode power supplies, active power factor cor-
rection, electronic lamp ballasts based on half bridge topology.
D
G
G DS
TO-220
FQP Series
GD S
TO-220F
FQPF Series
S
Absolute Maximum Ratings
Symbol
V
DSS
I
D
I
DM
V
GSS
E
AS
I
AR
E
AR
dv/dt
P
D
T
J
, T
STG
T
L
Drain-Source Voltage
Drain Current
- Continuous (T
C
= 25°C)
- Continuous (T
C
= 100°C)
Drain Current
- Pulsed
(Note 1)
Parameter
FQP10N60C
9.5
5.7
38
FQPF10N60C
600
9.5 *
5.7 *
38 *
±
30
Units
V
A
A
A
V
mJ
A
mJ
V/ns
Gate-Source Voltage
Single Pulsed Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Power Dissipation (T
C
= 25°C)
- Derate above 25°C
Operating and Storage Temperature Range
Maximum lead temperature for soldering purposes,
1/8" from case for 5 seconds
(Note 2)
(Note 1)
(Note 1)
(Note 3)
700
9.5
15.6
4.5
156
1.25
-55 to +150
300
50
0.4
W
W/°C
°C
°C
* Drain current limited by maximum junction temperature.
Thermal Characteristics
Symbol
R
θJC
R
θCS
R
θJA
Parameter
Thermal Resistance, Junction-to-Case
Thermal Resistance, Case-to-Sink Typ.
Thermal Resistance, Junction-to-Ambient
FQP10N60C
0.8
0.5
62.5
FQPF10N60C
2.5
--
62.5
Units
°C/W
°C/W
°C/W
©2007 Fairchild Semiconductor Corporation
1
www.fairchildsemi.com
FQP10N60C / FQPF10N60C Rev. C
FQP10N60C / FQPF10N60C 600V N-Channel MOSFET
Package Marking and Ordering Information
Device Marking
FQP10N60C
FQPF10N60C
Device
FQP10N60C
FQPF10N60C
Package
TO-220
TO-220F
Reel Size
--
--
Tape Width
--
--
Quantity
50
50
Electrical Characteristics
Symbol
Off Characteristics
BV
DSS
∆BV
DSS
/
∆T
J
I
DSS
I
GSSF
I
GSSR
T
C
= 25°C unless otherwise noted
Parameter
Test Conditions
Min
Typ
Max
Units
Drain-Source Breakdown Voltage
Breakdown Voltage Temperature
Coefficient
Zero Gate Voltage Drain Current
V
GS
= 0 V, I
D
= 250
µA
I
D
= 250
µA,
Referenced to 25°C
V
DS
= 600 V, V
GS
= 0 V
V
DS
= 480 V, T
C
= 125°C
V
GS
= 30 V, V
DS
= 0 V
V
GS
= -30 V, V
DS
= 0 V
600
--
--
--
--
--
--
0.7
--
--
--
--
--
--
1
10
100
-100
V
V/°C
µA
µA
nA
nA
Gate-Body Leakage Current, Forward
Gate-Body Leakage Current, Reverse
On Characteristics
V
GS(th)
R
DS(on)
g
FS
Gate Threshold Voltage
Static Drain-Source
On-Resistance
Forward Transconductance
V
DS
= V
GS
, I
D
= 250
µA
V
GS
= 10 V, I
D
= 4.75 A
V
DS
= 40 V, I
D
= 4.75 A
(Note 4)
2.0
--
--
--
0.6
8.0
4.0
0.73
--
V
Ω
S
Dynamic Characteristics
C
iss
C
oss
C
rss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
V
DS
= 25 V, V
GS
= 0 V,
f = 1.0 MHz
--
--
--
1570
166
18
2040
215
24
pF
pF
pF
Switching Characteristics
t
d(on)
t
r
t
d(off)
t
f
Q
g
Q
gs
Q
gd
Turn-On Delay Time
Turn-On Rise Time
Turn-Off Delay Time
Turn-Off Fall Time
Total Gate Charge
Gate-Source Charge
Gate-Drain Charge
V
DS
= 480 V, I
D
= 9.5A,
V
GS
= 10 V
(Note 4, 5)
(Note 4, 5)
V
DD
= 300 V, I
D
= 9.5A,
R
G
= 25
Ω
--
--
--
--
--
--
--
23
69
144
77
44
6.7
18.5
55
150
300
165
57
--
--
ns
ns
ns
ns
nC
nC
nC
Drain-Source Diode Characteristics and Maximum Ratings
I
S
I
SM
V
SD
t
rr
Q
rr
Notes:
1. Repetitive Rating : Pulse width limited by maximum junction temperature
2. L = 14.2mH, I
AS
= 9.5 A, V
DD
= 50V, R
G
= 25
Ω,
Starting T
J
= 25°C
3. I
SD
≤
9.5A, di/dt
≤
200A/µs, V
DD
≤
BV
DSS,
Starting T
J
= 25°C
4. Pulse Test : Pulse width
≤
300µs, Duty cycle
≤
2%
5. Essentially independent of operating temperature
Maximum Continuous Drain-Source Diode Forward Current
Maximum Pulsed Drain-Source Diode Forward Current
Drain-Source Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
V
GS
= 0 V, I
S
= 9.5 A
V
GS
= 0 V, I
S
= 9.5 A,
dI
F
/ dt = 100 A/µs
(Note 4)
--
--
--
--
--
--
--
--
420
4.2
9.5
38
1.4
--
--
A
A
V
ns
µC
2
FQP10N60C / FQPF10N60C Rev. C
www.fairchildsemi.com
FQP10N60C / FQPF10N60C 600V N-Channel MOSFET
Typical Performance Characteristics
Figure 1. On-Region Characteristics
Figure 2. Transfer Characteristics
V
GS
15.0 V
10.0 V
8.0 V
7.0 V
6.5 V
6.0 V
5.5 V
5.0 V
Bottom : 4.5 V
Top :
10
1
10
1
I
D
, Drain Current [A]
I
D
, Drain Current [A]
150
°
C
25
°
C
10
0
-55
°
C
10
0
10
-1
* Notes :
1. 250
µ
s Pulse Test
2. T
C
= 25
°
C
* Notes :
1. V
DS
= 40V
10
-1
2. 250
µ
s Pulse Test
10
0
10
1
2
4
6
8
10
V
DS
, Drain-Source Voltage [V]
V
GS
, Gate-Source Voltage [V]
Figure 3. On-Resistance Variation vs.
Drain Current and Gate Voltage
Figure 4. Body Diode Forward Voltage
Variation vs. Source Current
and Temperatue
2.0
R
DS(ON)
[
Ω
],
Drain-Source On-Resistance
I
DR
, Reverse Drain Current [A]
1.5
10
1
V
GS
= 10V
1.0
10
0
0.5
V
GS
= 20V
150
°
C
25
°
C
10
-1
* Notes :
1. V
GS
= 0V
2. 250
µ
s Pulse Test
* Note : T
J
= 25
°
C
0.0
0
5
10
15
20
25
30
35
0.2
0.4
0.6
0.8
1.0
1.2
1.4
I
D
, Drain Current [A]
V
SD
, Source-Drain voltage [V]
Figure 5. Capacitance Characteristics
3000
C
iss
= C
gs
+ C
gd
(C
ds
= shorted)
C
oss
= C
ds
+ C
gd
Figure 6. Gate Charge Characteristics
12
2500
C
rss
= C
gd
10
V
DS
= 120V
V
DS
= 300V
C
iss
V
GS
, Gate-Source Voltage [V]
Capacitance [pF]
2000
8
V
DS
= 480V
1500
C
oss
6
1000
* Notes ;
1. V
GS
= 0 V
4
C
rss
500
2. f = 1 MHz
2
* Note : I
D
= 9.5A
0
-1
10
0
10
0
10
1
0
10
20
30
40
50
V
DS
, Drain-Source Voltage [V]
Q
G
, Total Gate Charge [nC]
3
FQP10N60C / FQPF10N60C Rev. C
www.fairchildsemi.com
FQP10N60C / FQPF10N60C 600V N-Channel MOSFET
Typical Performance Characteristics
(Continued)
Figure 7. Breakdown Voltage Variation
vs. Temperature
1.2
Figure 8. On-Resistance Variation
vs. Temperature
3.0
BV
DSS
, (Normalized)
Drain-Source Breakdown Voltage
1.1
R
DS(ON)
, (Normalized)
Drain-Source On-Resistance
2.5
2.0
1.0
1.5
1.0
0.9
* Notes :
1. V
GS
= 0 V
2. I
D
= 250
µ
A
0.5
* Notes :
1. V
GS
= 10 V
2. I
D
= 4.75 A
0.8
-100
-50
0
50
100
150
200
0.0
-100
-50
0
50
100
150
200
T
J
, Junction Temperature [
°
C]
T
J
, Junction Temperature [
°
C]
Figure 9-1. Maximum Safe Operating Area
for FQP10N60C
10
2
Figure 9-2. Maximum Safe Operating Area
for FQPF10N60C
2
Operation in This Area
is Limited by R
DS(on)
10
µ
s
100
µ
s
10
Operation in This Area
is Limited by R
DS(on)
10
µ
s
I
D
, Drain Current [A]
100
µ
s
I
D
, Drain Current [A]
10
1
1 ms
10 ms
100 ms
DC
10
1
10
0
1 ms
10 ms
100 ms
DC
10
0
* Notes :
1. T
C
= 25
°
C
2. T
J
= 150
°
C
3. Single Pulse
10
-1
* Notes :
1. T
C
= 25
°
C
2. T
J
= 150
°
C
3. Single Pulse
10
-1
10
0
10
1
10
2
10
3
10
-2
10
0
10
1
10
2
10
3
V
DS
, Drain-Source Voltage [V]
V
DS
, Drain-Source Voltage [V]
Figure 10. Maximum Drain Current
vs. Case Temperature
10
8
I
D
, Drain Current [A]
6
4
2
0
25
50
75
100
125
150
T
C
, Case Temperature [
°
C]
4
FQP10N60C / FQPF10N60C Rev. C
www.fairchildsemi.com