GBJ6005–GBJ610
Vishay Lite–On Power Semiconducter
6.0A Glass Passivated Bridge Rectifier
Features
D
D
D
D
D
D
Glass passivated die construction
High case dielectric strength of 1500V
RMS
Low reverse leakage current
Surge overload rating to 170A peak
Ideal for printed circuit board applications
Plastic material – UL Recognition flammability
classification 94V–0
14 401
D
ULRecognized file #E95060
Absolute Maximum Ratings
T
j
= 25
_
C
Parameter
Repetitive peak reverse voltage
g
=Working peak reverse voltage
=DC Bl ki voltage
DC Blocking lt
Test Conditions
Type
GBJ6005
GBJ601
GBJ602
GBJ604
GBJ606
GBJ608
GBJ610
Symbol
V
RRM
=V
RWM
=V
R
V
Value
50
100
200
400
600
800
1000
170
6
–65...+150
Unit
V
V
V
V
V
V
V
A
A
°
C
Peak forward surge current
Average forward current
T
C
=110
°
C
Junction and storage temperature range
I
FSM
I
FAV
T
j
=T
stg
Electrical Characteristics
T
j
= 25
_
C
Parameter
Forward voltage
Reverse current
I
2
t Rating for fusing
Diode capacitance
Thermal resistance
junction to case
Test Conditions
I
F
=3A
T
C
=25
°
C
T
C
=125
°
C
V
R
=4V, f=1MHz
mounted on
75x75x1.6mm aluminum plate
Type
Symbol
V
F
I
R
I
R
I
2
t
C
D
R
thJC
Min
Typ
Max
1
5
500
120
Unit
V
m
A
m
A
A
2
s
pF
K/W
55
6.7
Rev. A2, 24-Jun-98
1 (4)
GBJ6005–GBJ610
Vishay Lite–On Power Semiconductor
Characteristics
(T
j
= 25
_
C unless otherwise specified)
I
FAV
– Average Forward Current ( A )
6
5
4
3
2
1
0
15749
with heatsink
100
C
D
– Diode Capacitance ( pF )
T
j
= 25°C
f = 1 MHz
without heatsink
10
Resistive or inductive load
0
25
50
75
100
125
150
15752
1
1
10
V
R
– Reverse Voltage ( V )
100
T
amb
– Ambient Temperature (
°C
)
Figure 1. Max. Average Forward Current vs.
Ambient Temperature
10
Figure 4. Typ. Diode Capacitance vs. Reverse Voltage
1000
I
R
– Reverse Current (
m
A )
I
F
– Forward Current ( A )
100
T
j
= 125°C
T
j
= 100°C
1.0
10
T
j
= 50°C
0.1
1.0
T
j
= 25°C
0.01
0
15750
T
j
= 25°C
I
F
Pulse Width = 300
µs
0.4
0.8
1.2
1.6 1.8
V
F
– Forward Voltage ( V )
0.1
15753
0
20
40
60
80
100
120 140
Percent of Rated Peak Reverse Voltage (%)
Figure 2. Typ. Forward Current vs. Forward Voltage
180
160
Figure 5. Typ. Reverse Current vs. Percent of
Rated Peak Reverse Voltage
I
FSM
– Peak Forward Surge Current ( A )
T
j
= 150°C
Single Half Sine–Wave
(JEDEC Method)
120
80
40
0
1
10
Number of Cycles at 60 Hz
100
15751
Figure 3. Max. Peak Forward Surge Current vs.
Number of Cycles
2 (4)
Rev. A2, 24-Jun-98
GBJ6005–GBJ610
Vishay Lite–On Power Semiconductor
Ozone Depleting Substances Policy Statement
It is the policy of
Vishay Semiconductor GmbH
to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as
their impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known
as ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH
has been able to use its policy of continuous improvements to eliminate the use
of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH
can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized
application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out
of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
4 (4)
Rev. A2, 24-Jun-98