PD - 91814A
SMPS MOSFET
IRFSL9N60A
HEXFET
®
Power MOSFET
Applications
l
Switch Mode Power Supply ( SMPS )
l
Uninterruptable Power Supply
l
High speed power switching
l
This device is only for through hole
application.
Benefits
Low Gate Charge Qg results in Simple
Drive Requirement
l
Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
l
Fully Characterized Capacitance and
Avalanche Voltage and Current
Absolute Maximum Ratings
l
V
DSS
600V
Rds(on) max
0.75Ω
I
D
9.2A
G DS
T O -26 2
Parameter
I
D
@ T
C
= 25°C
I
D
@ T
C
= 100°C
I
DM
P
D
@T
C
= 25°C
V
GS
dv/dt
T
J
T
STG
Continuous Drain Current, V
GS
@ 10V
Continuous Drain Current, V
GS
@ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
9.2
5.8
37
170
1.3
± 30
5.0
-55 to + 150
300 (1.6mm from case )
Units
A
W
W/°C
V
V/ns
°C
Applicable Off Line SMPS Topologies:
l
l
Active Clamped Forward
Main Switch
Notes
through
are on page 8
www.irf.com
1
12/23/98
IRFSL9N60A
Static @ T
J
= 25°C (unless otherwise specified)
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Parameter
Drain-to-Source Breakdown Voltage
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
Conditions
600 ––– –––
V
V
GS
= 0V, I
D
= 250µA
––– ––– 0.75
Ω
V
GS
= 10V, I
D
= 5.5A
2.0
––– 4.0
V
V
DS
= V
GS
, I
D
= 250µA
––– ––– 25
V
DS
= 600V, V
GS
= 0V
µA
––– ––– 250
V
DS
= 480V, V
GS
= 0V, T
J
= 150°C
––– ––– 100
V
GS
= 30V
nA
––– ––– -100
V
GS
= -30V
Dynamic @ T
J
= 25°C (unless otherwise specified)
g
fs
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
oss
C
oss
C
oss
eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
5.5
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
13
25
30
22
1400
180
7.1
1957
49
96
Max. Units
Conditions
–––
S
V
DS
= 25V, I
D
= 3.1A
49
I
D
= 9.2A
13
nC V
DS
= 400V
20
V
GS
= 10V, See Fig. 6 and 13
–––
V
DD
= 300V
–––
I
D
= 9.2A
ns
–––
R
G
= 9.1Ω
–––
R
D
= 35.5Ω,See Fig. 10
–––
V
GS
= 0V
–––
V
DS
= 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
V
GS
= 0V, V
DS
= 1.0V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 480V, ƒ = 1.0MHz
–––
V
GS
= 0V, V
DS
= 0V to 480V
Avalanche Characteristics
Parameter
E
AS
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Typ.
–––
–––
–––
Max.
290
9.2
17
Units
mJ
A
mJ
Thermal Resistance
Parameter
R
θJC
R
θJA
Junction-to-Case
Junction-to-Ambient (PCB Mounted,steady-state)
Typ.
–––
–––
Max.
0.75
40
Units
°C/W
Diode Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 9.2
showing the
A
G
integral reverse
––– –––
37
S
p-n junction diode.
––– ––– 1.5
V
T
J
= 25°C, I
S
= 9.2A, V
GS
= 0V
––– 530 800
ns
T
J
= 25°C, I
F
= 9.2A
––– 3.0 4.4
µC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by L
S
+L
D
)
2
www.irf.com
IRFSL9N60A
100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
100
I
D
, Drain-to-Source Current (A)
10
I
D
, Drain-to-Source Current (A)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
TOP
10
1
4.7V
20µs PULSE WIDTH
T
J
= 25
°
C
1
10
100
4.7V
20µs PULSE WIDTH
T
J
= 150
°
C
1
10
100
0.1
0.1
1
V
DS
, Drain-to-Source Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 1.
Typical Output Characteristics
Fig 2.
Typical Output Characteristics
100
3.0
I
D
= 9.2A
R
DS(on)
, Drain-to-Source On Resistance
(Normalized)
I
D
, Drain-to-Source Current (A)
2.5
10
T
J
= 150
°
C
2.0
1.5
T
J
= 25
°
C
1
1.0
0.5
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
10.0
0.0
-60 -40 -20
V
GS
= 10V
0
20
40
60
80 100 120 140 160
V
GS
, Gate-to-Source Voltage (V)
T
J
, Junction Temperature (
°
C)
Fig 3.
Typical Transfer Characteristics
Fig 4.
Normalized On-Resistance
Vs. Temperature
www.irf.com
3
IRFSL9N60A
2400
20
2000
V
GS
, Gate-to-Source Voltage (V)
V
GS
C
is s
C
rss
C
o ss
=
=
=
=
0V,
f = 1M H z
C
g s
+ C
g d
, C
d s
S H O R TE D
C
gd
C
ds
+ C
gd
I
D
= 9.2A
400V
V
DS
= 480V
V
DS
= 300V
V
DS
= 120V
16
C , Capacitance (pF )
C
iss
1600
C
oss
1200
12
8
800
400
C
rss
4
0
1
10
100
1000
A
0
0
10
20
FOR TEST CIRCUIT
SEE FIGURE 13
30
40
50
V
D S
, D rain-to-S ource V oltage (V )
Q
G
, Total Gate Charge (nC)
Fig 5.
Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 6.
Typical Gate Charge Vs.
Gate-to-Source Voltage
100
1000
OPERATION IN THIS AREA LIMITED
BY R
DS(on)
I
SD
, Reverse Drain Current (A)
10
I
D
, Drain Current (A)
100
T
J
= 150
°
C
10us
10
100us
1ms
1
10ms
1
T
J
= 25
°
C
0.1
0.2
V
GS
= 0 V
0.5
0.7
1.0
1.2
0.1
T
C
= 25 ° C
T
J
= 150 ° C
Single Pulse
10
100
1000
10000
V
SD
,Source-to-Drain Voltage (V)
V
DS
, Drain-to-Source Voltage (V)
Fig 7.
Typical Source-Drain Diode
Forward Voltage
Fig 8.
Maximum Safe Operating Area
4
www.irf.com
IRFSL9N60A
10.0
V
DS
V
GS
R
D
8.0
D.U.T.
+
R
G
I
D
, Drain Current (A)
-
V
DD
6.0
10V
Pulse Width
≤ 1
µs
Duty Factor
≤ 0.1 %
4.0
Fig 10a.
Switching Time Test Circuit
2.0
V
DS
90%
0.0
25
50
75
100
125
150
T
C
, Case Temperature
( °C)
10%
V
GS
Fig 9.
Maximum Drain Current Vs.
Case Temperature
t
d(on)
t
r
t
d(off)
t
f
Fig 10b.
Switching Time Waveforms
1
Thermal Response (Z
thJC
)
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
P
DM
t
1
SINGLE PULSE
(THERMAL RESPONSE)
t
2
Notes:
1. Duty factor D = t
1
/ t
2
2. Peak T
J
= P
DM
x Z
thJC
+ T
C
0.001
0.01
0.1
1
0.01
0.00001
0.0001
t
1
, Rectangular Pulse Duration (sec)
Fig 11.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5