DATA SHEET
DATA SHEET
MOS FIELD EFFECT TRANSISTOR
3SK131
RF AMP. FOR VHF TV TUNER
N-CHANNEL SILICON DUAL-GATE MOS FIELD-EFFECT TRANSISTOR
4PIN MINI MOLD
FEATURES
• Suitable for use as RF amplifier in VHF TV tuner.
• Low C
rss
: 0.05 pF TYP.
• High G
ps
: 23 dB TYP.
• Low NF : 1.3 dB TYP.
PACKAGE DIMENSIONS
(Unit: mm)
0.4
−0.05
0.4
−0.05
0.16
5°
+0.1
−0.06
2.8
−0.3
1.5
−0.1
2
+0.2
+0.1
+0.1
+0.2
Drain to Source Voltage
Gate1 to Source Voltage
Gate2 to Source Voltage
Drain Current
Total Power Dissipation
Channel Temperature
Storage Temperature
V
DSX
V
G1S
V
G2S
I
D
P
T
T
ch
T
stg
20
V
V
V
mA
mW
0.6
−0.05
5°
5°
25
200
125
5°
ELECTRICAL CHARACTERISTICS (T
A
= 25
C)
CHARACTERISTIC
Drain to Source Breakdown Voltage
Drain Current
Gate1 to Source Cutoff Voltage
Gate2 to Source Cutoff Voltage
Gate1 Reverse Current
Gate2 Reverse Current
Forward Transfer Admittance
SYMBOL
BV
DSX
I
DSS
V
G1S(OFF)
V
G2S(OFF)
I
G1SS
I
G2SS
MIN.
20
7
10
25
TYP.
MAX.
UNIT
V
mA
V
V
nA
nA
mS
PIN CONNECTIONS
1. Source
2. Drain
3. Gate 2
4. Gate 1
TEST CONDITIONS
V
G1S
= V
G2S
=
2 V, I
D
= 10
A
V
DS
= 6 V, V
G2S
= 3 V, V
G1S
= 0
V
DS
= 8 V, V
G2S
= 0, I
D
= 5
A
V
DS
= 8 V V
G1S
= 0, I
D
= 5
A
V
DS
= 0, V
G1S
=
8 V, V
G2S
= 0
V
DS
= 0, V
G2S
=
8 V, V
G1S
= 0
V
DS
= 6 V, V
G2S
= 3 V, I
D
= 10 mA
f = 1 kHz
2.0
1.5
20
20
22
28
y
fs
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Power Gain
Noise Figure
C
iss
C
oss
C
rss
C
ps
NF
4.0
2.2
5.0
2.9
0.05
6.5
3.7
0.08
pF
pF
pF
dB
V
DS
= 6 V, V
G2S
= 3 V, I
D
= 10 mA
f = 1 MHz
21
24
1.2
2.5
V
DS
= 10 V, V
G2S
= 5 V, I
D
= 10 mA
f = 200 MHz
dB
I
DSS
classification
V11 7-13 mA V12 11-19 mA V13 17-25 mA
Document No. P12449EJ2V0DS00 (2nd edition)
(Previous No. TC-1508)
Date Published March 1997 N
Printed in Japan
0 to 0.1
55 to +125
C
C
+0.2
−3.1
1.1
0.8
©
0.4
−0.05
+0.1
+0.1
8
8
1
4
(1.9)
ABSOLUTE MAXIMUM RATINGS (T
A
= 25
C)
(1.8)
0.85 0.95
2.9±0.2
3
1983
3SK131
TYPICAL CHARACTERISTICS (T
A
= 25
C)
TOTAL POWER DISSIPATION vs.
AMBIENT TEMPERATURE
20
P
T
-Total Power Dissipation-mW
DRAIN CURRENT vs.
DRAIN TO SOURCE VOLTAGE
V
G2
= 3.0 V
400
I
D
-Drain Current-mA
V
G1S
= 0 V
−0.1
10
−0.2
−0.3
−0.4
−0.5
−0.6
300
200
100
0
25
50
75
100
T
a
-Ambient Temperature-°C
125
0
10
V
DS
-Drain to Source Voltage-V
20
DRAIN CURRENT vs.
GATE1 TO SOURCE VOLTAGE
20
2V
4V
3V
FORWARD TRANSFER ADMITTANCE vs.
GATE1 TO SOURCE VOLTAGE
|y
fs
|-Forward Transfer Admitance-ms
5V
V
DS
= 6 V
40
1V
V
G2S
= 5 V
4V
I
D
-Drain Current-mA
30
3V
20
10
1V
0
0V
−1.0
0
V
G1S
-Gate 1 to Source Voltage-V
1.0
2V
10
V
G2S
= 0
−1.0
0
V
G1S
-Gate 1 to Source Voltage-V
+1.0
FORWARD TRANSFER ADMITTANCE vs.
DRAIN CURRENT
30
|y
fs
|-Forward Transfer Admitance-ms
C
iss
-Input Capacitance-pF
INPUT CAPACITANCE vs.
GATE2 TO SOURCE VOLTAGE
V
DS
= 6.0 V
f = 1 MHz
8.0
25
6.0
V
G1S
= 0.05 V
20
4.0
15
2.0
10
V
DS
= 6 V
V
G2
= 3 V
f = 1.0 kHz
10
I
D
-Drain Current-mA
20
0
−1.0
0
1.0
2.0
3.0
V
G2S
-Gate 2 to Source Voltage-V
4.0
5
0
2
3SK131
OUTPUT CAPACITANCE vs.
GATE2 TO SOURCE VOLTAGE
5.0
V
DS
= 6.0 V
f = 1.0 MHz
C
oss
-Output Capacitance-pF
b
is
-Input Susceptance-mS
INPUT ADMITTANCE (y
is
)
vs. FREQUENCY
10
V
DS2
= 6 V
V
G2S
= 3 V
I
D
= 10 mA
300 MHz
4.0
V
G1S
= 0 V
3.0
2.0
−0.5
V
5
200 MHz
1.0
100 MHz
0
−1.0
0
1.0
2.0
3.0
V
G2S
-Gate 2 to Source Voltage-V
4.0
0
1
g
is
-Input Conductance-mS
2
−5
b
fs
-Forward Trancfer Susceptance-mS
FORWARD TRANSFER ADMITTANCE (y
fs
)
vs. FREQUENCY
g
fs
-Forward Transfer Conductance-mS
100 MHz
10
20
30
b
rs
-Reverse Transfer Susceptance-mS
0
REVERSE TRANSFER ADMITTANCE (y
rs
)
vs. FREQUENCY
g
rs
-Reverse Transfer Conductance-mS
0.1
0.2
V
DS
= 6 V
V
G2S
= 3 V
I
D
= 10 mA
V
DS
= 6 V
V
G2S
= 3 V
I
D
= 10 mA
300 MHz
−0.1
200 MHz
−10
200 MHz
300 MHz
−15
−0.2
100 MHz
5
OUTPUT ADMITTANCVE (y
os
)
vs. FREQUENCY
300 MHz
V
DS
= 6 V
V
G2S
= 3 V
I
D
= 10 mA
G
ps
-Power Gain-dB
POWER GAIN vs. DRAIN CURRENT
25
b
os
-Output Susceptance-mS
4
20
200 MHz
3
15
f = 200 MHz
V
DS
= 10 V
V
G2S
= 5 V
V
DS
= 5 V
V
G2S
= 3 V
2
100 MHz
1
10
5
0
0.5
g
os
-Output Conductance-mS
1.0
0
2
4
6
I
D
-Drain Current=mA
8
10
3
3SK131
NOISE FIGURE vs. DRAIN CURRENT
f = 200 MHz
V
DS
= 10 V
V
G2S
= 5 V
V
DS
= 5 V
V
G2S
= 3 V
NOISE FIGURE, POWER GAIN vs.
GATE2 TO SOURCE VOLTAGE
f = 200 MHz
V
DS
= 10 V
V
DS
= 5 V
30
G
ps
4
NF-Noise Figure-dB
4.0
NF-Noise Figure-dB
3.0
G
ps
-Power Gain-dB
20
3
10
2
0
NF
−10
1
2.0
1.0
0
2
4
6
I
D
-Drain Current=mA
8
10
−1
0
0
1
2
3
4
5
6
V
G2S
-Gate 2 to Source Voltage-V
7
8
TEST CIRCUIT
V
G2S
1000 pF
22 kΩ
1000 pF
TEST CONDITION
V
DS
= 10 V, V
G2S
= 5 V, I
D
= 10 mA
f = 200 MHz
L
1
:
φ
0.6 mm U.E.W. 7 mm 3T
7 pF
OUTPUT
L
2
:
φ
0.6 mm U.E.W. 7 mm 3T
L
3
: RFC 2.2
µ
H
50
Ω
1000 pF
15 pF
L
3
22 kΩ
1000 pF
1000 pF
INPUT
50
Ω
7 pF
L
1
1000 pF
15 pF
200
Ω
1000 pF
L
2
V
G1S
V
DS
4