Off-line systems with auto-ranging or PFC front ends, industrial and process control,
distributed power, medical, ATE, communications, defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V300A12T500BL2
300A
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
=
- 10 to +100
- 20 to +125
C
=
- 20 to +100
- 40 to +125
T
=
- 40 to +100
- 40 to +125
H
=
- 40 to +100
- 55 to +125
M
=
- 55 to +100
- 65 to +125
B
Output Power
P
OUT
160W
264W, 200W
400W, 300W
400W, 300W
500W, 400W
500W, 400W
500W, 400W
500W, 400W
500W, 400W
500W, 400W
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
2
= 2V
3V3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
36
= 36V
48 =
48V
V
OUT
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
Finish
Pin Style
Tin/Lead
Blank:
Short
Tin/Lead
L:
Long
Gold
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
300V Maxi Family
Page 1 of 14
Rev 9.9
03/2017
vicorpower.com
800 927.9474
300V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
147.4
378.7
174.6
152.8
393.8
412.6
1.2
Min
180
Typ
300
Max
375
400
178.2
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
±1
±0.20
±0.005
±5
110
Unit
%
%
% / °C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
2V
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
-0.5 to 3.1
-0.5 to 4.7
-0.5 to 7.0
-0.5 to 10.9
-0.5 to 16.1
-0.5 to 20.0
-0.5 to 31.7
-0.5 to 36.9
-0.5 to 47.4
-0.5 to 62.9
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application
information, please refer to output connections on page 9.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20263)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.08
0.07
4.9
1.1
165
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
300V Maxi Family
Page 2 of 14
Rev 9.9
03/2017
vicorpower.com
800 927.9474
300V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink
≥4
mA. See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
6.5
(184.3)
7.4
(209.3)
100
3000
1500
500
10
7.3
(207.5)
8.2
(232.5)
115
cURus, cTÜVus, CE
8.1
(230.7)
9.0
(255.7)
Min
Typ
Max
0.5
Unit
V
DC
V
RMS
V
RMS
V
RMS
MΩ
ounces
(grams)
ounces
(grams)
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
300V Maxi Family
Page 3 of 14
Rev 9.9
03/2017
vicorpower.com
800 927.9474
300V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS
2V
OUT
, 160W (e.g. S300A2C160BL, V300A2C160BL)
Parameter
Efficiency
S300A2C160BL (enhanced efficiency)
V300A2C160BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
74.5
72.5
2.7
Typ
82.5
74
262
2.8
7.9
±0.02
92
92
Max
Unit
%
327
2.9
8.1
±0.2
80
112
112
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 264W (e.g. S300A3V3C264BL, V300A3V3C264BL)
Parameter
Efficiency
S300A3V3C264BL (enhanced efficiency)
V300A3V3C264BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
81.0
80.0
4.14
Typ
84.5
81.2
288
4.3
8.1
±0.02
92
92
Max
Unit
%
360
4.46
9.4
±0.2
80
112
112
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
3.3V
OUT
, 200W (e.g. S300A3V3C200BL, V300A3V3C200BL)
Parameter
Efficiency
S300A3V3C200BL (enhanced efficiency)
V300A3V3C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
80.5
78.1
4.14
Typ
84.5
79.6
80
4.3
6.2
±0.02
69.7
69.7
Max
Unit
%
100
4.46
12
±0.2
60.6
81.9
81.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.8
42.4
5V
OUT
, 400W (e.g. S300A5C400BL, V300A5C400BL)
Parameter
Efficiency
S300A5C400BL (enhanced efficiency)
V300A5C400BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.8
81.5
6.03
Typ
86.5
83
100
6.25
6.2
±0.02
92
92
Max
Unit
%
125
6.47
9.3
±0.2
80
112
112
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
81.6
56
300V Maxi Family
Page 4 of 14
Rev 9.9
03/2017
vicorpower.com
800 927.9474
300V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.)
5V
OUT
, 300W (e.g. S300A5C300BL, V300A5C300BL)
Parameter
Efficiency
S300A5C300BL (enhanced efficiency)
V300A5C300BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.5
83.2
6.03
Typ
86.5
84.2
150
6.25
12.0
±0.02
69
69
Max
Unit
%
188
6.47
13.2
±0.2
60
81
81
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
61.2
42
8V
OUT
, 400W (e.g. S300A8C400BL, V300A8C400BL)
Parameter
Efficiency
S300A8C400BL (enhanced efficiency)
V300A8C400BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.7
82.5
9.36
Typ
87.0
83.8
320
9.7
14.6
±0.02
57.5
57.5
Max
Unit
%
400
10.1
16
±0.2
50
67.5
67.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
51
35
8V
OUT
, 300W (e.g. S300A8C300BL, V300A8C300BL)
Parameter
Efficiency
S300A8C300BL (enhanced efficiency)
V300A8C300BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Output Current
Current limit
Short circuit current
Min
85.0
82
9.36
Typ
87.0
84.8
250
9.7
8.9
±0.02
43.1
43.1
Max
Unit
%
313
10.1
10
±0.2
37.5
50.7
50.7
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
38.2
26.2
12V
OUT
, 500W (e.g. S300A12C500BL, V300A12C500BL)
Parameter
Efficiency
S300A12C500BL (enhanced efficiency)
V300A12C500BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.6
85.5
13.7
Typ
88.0
86.7
280
14.3
12.2
±0.02
48
48
Max
Unit
%
350
14.9
13.2
±0.2
41.6
60.5
60.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
[i=s] This post was last edited by qwqwqw2088 on 2019-2-11 14:23 Edit[/i] [size=4][color=#000000][backcolor=white] The development of new energy and electric vehicles will use lithium batteries with r...
[i=s]This post was last edited by dcexpert on 2019-10-17 10:55[/i]In SAMR21, part of the flash space can be used to simulate EEPROM, which is called NVM (Non-Volatile Memory). Using EEPROM is simpler ...
On the ATmega4809 Curiosity Nano, the button uses PF6, which is also the RST pin and is set to GPIO mode by default. Because there is a 100K pull-up resistor R200 on PF6, there is no need to set the i...
[align=left][b][font=微软雅黑][size=3]No way to get support in the middle of the night, time-consuming to return software to the factory for upgrading, too low efficiency of customer service communication...
[size=4]1. The so-called rail-to-rail operational amplifier refers to an amplifier whose input and output voltage swings are very close to or almost equal to the power supply voltage. [/size] [size=4]...
I have used a function generator from manufacturer A before. Its output protection is quite complete. If the output probe encounters external interference, such as accidentally connecting to a DC powe...
According to the Economic Daily, the Sino-US trade war and the new coronavirus epidemic have dealt a double blow, accelerating the reshuffle of the two major mobile phone supply chains of Apple and S...[Details]
What will be most popular in 2023? It is undoubtedly AGI (Artificial General Intelligence) represented by ChatGPT, which is even called the promoter of the fourth industrial revolution. Bill Gates sa...[Details]
Browsing the development direction of DC fast charging in the IWC of the US EPRI, with Biden's election, the demand for DC fast charging is increasing. The gameplay of multi-port converters is explai...[Details]
A megger is commonly known as a shaking meter. Most meggers are powered by hand-cranked generators, so they are also called shaking meters. Its scale is in megohms (MΩ). It is a commonly used measuri...[Details]
System hardware design:
Compared with GPIB, VXI, RS232 and other instruments, PXI modular instruments have the advantages of fast speed, small size, and easy expansion. Therefore, in terms of har...[Details]
code is a keyword extended by KEIL C51. Variables modified with code will be placed in the CODE area. But the const keyword in C seems to also have the function of defining variables that cannot be...[Details]
Technology is integrated into every aspect of our lives, bringing about a connected, media-driven lifestyle that is driving further development of technology, including today’s highly integrated aut...[Details]
In 2023, we will begin to sort out the smart monthly report. We will track the main chips of smart cars one by one, focusing on smart cockpits, smart driving, gateways and perception chips, etc. to t...[Details]
"Electric vehicle manufacturers that are still producing on a small scale will give up during the market contraction. The epidemic will accelerate their demise," said an industry investor. China's ...[Details]
USART real-time display voltage value:
Mainly the writing of adc.h and adc.c files (written as add.h and add.c during the experiment)
After debugging for a whole morning, I found that the clock was...[Details]
1. Establish the necessary stm32 development project 1. The FreeRTOS folder contains the source folder of the entire FreeRTOS system. FreeRTOS is already stored in the cloud disk. You can also do...[Details]
On December 8, the groundbreaking ceremony for Zhuhai Yuexin Semiconductor Co., Ltd.'s high-end RF and FCBGA packaging substrate production and manufacturing project (hereinafter referred to as the "...[Details]
We software engineers love to find the perfect solution to any problem we encounter. But oddly enough, we find that in this particular area, there is no perfect solution. Clever tricks may save some ...[Details]
This paper introduces a wireless remote medical monitoring system based on GPRS technology. With SPCE061A as the main control chip, the data acquisition module and the GPRS communication module are...[Details]
As climate change becomes increasingly serious, humans must take strong measures to significantly reduce carbon emissions. Under the new legislative and policy framework, the automotive industry is...[Details]