D ts e t
aa h e
R c e t r lc r nc
o h se Ee to is
Ma u a t r dCo o e t
n fc u e
mp n n s
R c e tr b a d d c mp n ns ae
o h se rn e
o oet r
ma ua trd u ig ete dewaes
n fcue sn i r i/ fr
h
p rh s d f m te oiia s p l r
uc a e r
o h r n l u pi s
g
e
o R c e tr waes rce td f m
r o h se
fr e rae r
o
te oiia I. Al rce t n ae
h
r nl P
g
l e rai s r
o
d n wi tea p o a o teOC
o e t h p rv l f h
h
M.
P r aetse u igoiia fcoy
at r e td sn r n la tr
s
g
ts p o rmso R c e tr e eo e
e t rga
r o h se d v lp d
ts s lt n t g aa te p o u t
e t oui s o u rne
o
rd c
me t o e c e teOC d t s e t
es r x e d h
M aa h e.
Qu l yOv riw
ai
t
e ve
• IO- 0 1
S 90
•A 92 cr ct n
S 1 0 et ai
i
o
• Qu l e Ma ua trr Ls (
ai d
n fcues it QML MI- R -
) LP F
385
53
•C a sQ Mitr
ls
lay
i
•C a sVS a eL v l
ls
p c ee
• Qu l e S p l r Ls o D sr uos( L )
ai d u pi s it f it b tr QS D
e
i
•R c e trsacic l u pir oD A a d
o h se i
r ia s p l t L n
t
e
me t aln u t a dD A sa d r s
es lid sr n L tn ad .
y
R c e tr lcrnc , L i c mmi e t
o h se Ee t is L C s o
o
tdo
t
s p ligp o u t ta s t f c so r x e t-
u pyn rd cs h t ai y u tme e p ca
s
t n fr u lya daee u loto eoiial
i s o q ai n r q a t h s r n l
o
t
g
y
s p l db id sr ma ua trr.
u pi
e yn ut
y n fcues
T eoiia ma ua trr d ts e t c o a yn ti d c me t e e t tep r r n e
h r n l n fcue’ aa h e a c mp n ig hs o u n r cs h ef ma c
g
s
o
a ds e ic t n o teR c e tr n fcue v rino ti d vc . o h se Ee t n
n p c ai s f h o h se ma ua trd eso f hs e ie R c e tr lcr -
o
o
isg aa te tep r r n eo i s mio d co p o u t t teoiia OE s e ic -
c u rne s h ef ma c ft e c n u tr rd cs o h r n l M p c a
o
s
g
t n .T pc lv le aefr eee c p r o e o l. eti mii m o ma i m rt g
i s ‘y ia’ au s r o rfrn e up s s ny C r n nmu
o
a
r xmu ai s
n
ma b b s do p o u t h rceiain d sg , i lt n o s mpetsig
y e a e n rd c c aa tr t , e in smuai , r a l e t .
z o
o
n
© 2 1 R cetr l t n s LC Al i t R sre 0 1 2 1
0 3 ohs E cr i , L . lRg s eevd 7 1 0 3
e e oc
h
T l r m r, l s v iw wrcl . m
o e n oe p ae it w . e c o
a
e
s
o ec
NPN − MPSA05, MPSA06*;
PNP − MPSA55, MPSA56*
*Preferred Devices
Amplifier Transistors
Voltage and Current are Negative
for PNP Transistors
http://onsemi.com
Features
NPN
COLLECTOR
3
2
BASE
1
EMITTER
2
BASE
1
EMITTER
PNP
COLLECTOR
3
•
Pb−Free Packages are Available*
MAXIMUM RATINGS
Rating
Collector −Emitter Voltage
MPSA05, MPSA55
MPSA06, MPSA56
Collector −Base Voltage
MPSA05, MPSA55
MPSA06, MPSA56
Emitter −Base Voltage
Collector Current − Continuous
Total Device Dissipation @ T
A
= 25°C
Derate above 25°C
Total Device Dissipation @ T
C
= 25°C
Derate above 25°C
Operating and Storage Junction
Temperature Range
Symbol
V
CEO
60
80
V
CBO
60
80
V
EBO
I
C
P
D
P
D
T
J
, T
stg
4.0
500
625
5.0
1.5
12
−55 to +150
Vdc
mAdc
W
mW/°C
W
mW/°C
°C
Vdc
Value
Unit
Vdc
TO−92
CASE 29
STYLE 1
12
1
3
STRAIGHT LEAD
BULK PACK
3
BENT LEAD
TAPE & REEL
AMMO PACK
2
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction−to−Ambient
(Note 1)
Thermal Resistance, Junction−to−Case
Symbol
R
qJA
R
qJC
Max
200
83.3
Unit
°C/W
°C/W
MARKING DIAGRAM
Stresses exceeding Maximum Ratings may damage the device. Maximum
Ratings are stress ratings only. Functional operation above the Recommended
Operating Conditions is not implied. Extended exposure to stresses above the
Recommended Operating Conditions may affect device reliability.
1. R
qJA
is measured with the device soldered into a typical printed circuit board.
MPS
Axx
AYWW
G
G
xx
= 05, 06, 55, or 56
A
= Assembly Location
Y
= Year
WW = Work Week
G
= Pb−Free Package
(Note: Microdot may be in either location)
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
©
Semiconductor Components Industries, LLC, 2007
Preferred
devices are recommended choices for future use
and best overall value.
1
April, 2007 − Rev. 3
Publication Order Number:
MPSA05/D
NPN − MPSA05, MPSA06*; PNP − MPSA55, MPSA56*
ELECTRICAL CHARACTERISTICS
(T
A
= 25°C unless otherwise noted)
Characteristic
OFF CHARACTERISTICS
Collector −Emitter Breakdown Voltage (Note 2)
(I
C
= 1.0 mAdc, I
B
= 0)
Emitter −Base Breakdown Voltage
(I
E
= 100
mAdc,
I
C
= 0)
Collector Cutoff Current
(V
CE
= 60 Vdc, I
B
= 0)
Collector Cutoff Current
(V
CB
= 60 Vdc, I
E
= 0)
(V
CB
= 80 Vdc, I
E
= 0)
ON CHARACTERISTICS
DC Current Gain
(I
C
= 10 mAdc, V
CE
= 1.0 Vdc)
(I
C
= 100 mAdc, V
CE
= 1.0 Vdc)
Collector −Emitter Saturation Voltage
(I
C
= 100 mAdc, I
B
= 10 mAdc)
Base−Emitter On Voltage
(I
C
= 100 mAdc, V
CE
= 1.0 Vdc)
SMALL−SIGNAL CHARACTERISTICS
Current −Gain − Bandwidth Product (Note 3)
(I
C
= 10 mA, V
CE
= 2.0 V, f = 100 MHz)
(I
C
= 100 mAdc, V
CE
= 1.0 Vdc, f = 100 MHz)
2. Pulse Test: Pulse Width
v
300
ms,
Duty Cycle
v
2%.
3. f
T
is defined as the frequency at which |h
fe
| extrapolates to unity.
f
T
MPSA05
MPSA06
MPSA55
MPSA56
100
50
−
−
MHz
h
FE
100
100
V
CE(sat)
V
BE(on)
−
−
−
−
0.25
1.2
Vdc
Vdc
−
MPSA05, MPSA55
MPSA06, MPSA56
V
(BR)CEO
MPSA05, MPSA55
MPSA06, MPSA56
V
(BR)EBO
I
CES
I
CBO
−
−
0.1
0.1
60
80
4.0
−
−
−
−
0.1
Vdc
mAdc
mAdc
Vdc
Symbol
Min
Max
Unit
TURN−ON TIME
−1.0 V
V
CC
+40 V
R
L
OUTPUT
V
in
0
t
r
= 3.0 ns
5.0
mF
100
5.0
ms
t
r
= 3.0 ns
R
B
* C
S
t
6.0 pF
V
in
5.0
mF
TURN−OFF TIME
+V
BB
V
CC
+40 V
100
R
B
* C
S
t
6.0 pF
100
R
L
OUTPUT
5.0
ms
+10 V
100
*Total Shunt Capacitance of Test Jig and Connectors For PNP Test Circuits, Reverse All Voltage Polarities
Figure 1. Switching Time Test Circuits
http://onsemi.com
2
NPN − MPSA05, MPSA06*; PNP − MPSA55, MPSA56*
NPN
f T , CURRENT−GAIN − BANDWIDTH PRODUCT (MHz)
300
200
V
CE
= 2.0 V
T
J
= 25°C
f T , CURRENT−GAIN − BANDWIDTH PRODUCT (MHz)
200
V
CE
= −2.0 V
T
J
= 25°C
PNP
100
70
50
100
70
50
30
2.0
30
20
−2.0 −3.0
3.0
5.0 7.0 10
20
30
50
70 100
200
−5.0 −7.0 −10
−20 −30
−50 −70 −100
−200
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 2. MPSA05/06 Current−Gain —
Bandwidth Product
Figure 3. MPSA55/56 Current−Gain —
Bandwidth Product
80
60
40
C, CAPACITANCE (pF)
C
ibo
20
C, CAPACITANCE (pF)
T
J
= 25°C
100
70
50
30
20
C
ibo
T
J
= 25°C
10
8.0
6.0
4.0
0.1
0.2
0.5
1.0
2.0
5.0
10
20
C
obo
50
100
10
7.0
5.0
−0.1 −0.2
−0.5 −1.0
−2.0
−5.0
−10 −20
C
obo
−50 −100
V
R
, REVERSE VOLTAGE (VOLTS)
V
R
, REVERSE VOLTAGE (VOLTS)
Figure 4. MPSA05/06 Capacitance
Figure 5. MPSA55/56 Capacitance
1.0 k
700
500
300
t, TIME (ns)
200
100
70
50
30
20
10
V
CC
= 40 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
5.0 7.0 10
t
s
1.0 k
700
500
300
t, TIME (ns)
200
100
70
50
30
20
V
CC
= −40 V
I
C
/I
B
= 10
I
B1
= I
B2
T
J
= 25°C
t
s
t
f
t
r
t
d
@ V
BE(off)
= 0.5 V
20
30
50
70 100
200 300
500
t
f
t
d
@ V
BE(off)
= −0.5 V
−20 −30
−50 −70 −100
t
r
−200 −300
−500
10
−5.0 −7.0 −10
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 6. MPSA05/06 Switching Time
Figure 7. MPSA55/56 Switching Time
http://onsemi.com
3
NPN − MPSA05, MPSA06*; PNP − MPSA55, MPSA56*
NPN
1.0 k
700
500
300
200
T
A
= 25°C
100
70
50
30
20
10
1.0
T
C
= 25°C
100
ms
1.0 ms
1.0 s
−1.0 k
−700
−500
−300
−200
T
A
= 25°C
−100
−70
−50
−30
−20
−10
−1.0
T
C
= 25°C
1.0 s
PNP
100
ms
1.0 ms
I C , COLLECTOR CURRENT (mA)
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
MPSA05
2.0
3.0
5.0 7.0 10
MPSA06
20
30
50
70 100
I C , COLLECTOR CURRENT (mA)
CURRENT LIMIT
THERMAL LIMIT
SECOND BREAKDOWN LIMIT
MPSA55
−2.0 −3.0
−5.0 −7.0 −10
MPSA56
−20 −30
−50 −70 −100
V
CE
, COLLECTOR−EMITTER VOLTAGE (VOLTS)
V
CE
, COLLECTOR−EMITTER VOLTAGE (VOLTS)
Figure 8. MPSA05/06 Active−Region Safe
Operating Area
400
T
J
= 125°C
V
CE
= 1.0 V
h FE , DC CURRENT GAIN
25°C
−55°C
100
80
60
40
0.5
h FE, DC CURRENT GAIN
200
200
400
Figure 9. MPSA55/56 Active−Region Safe
Operating Area
T
J
= 125°C
V
CE
= −1.0 V
25°C
−55°C
100
80
60
1.0
2.0 3.0 5.0
10
20 30
50
100
200 300 500
40
−0.5 −1.0 −2.0
−5.0 −10
−20
−50
−100 −200
−500
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 10. MPSA05/06 DC Current Gain
Figure 11. MPSA55/56 DC Current Gain
1.0
T
J
= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
V, VOLTAGE (VOLTS)
−1.0
T
J
= 25°C
V
BE(sat)
@ I
C
/I
B
= 10
0.8
V, VOLTAGE (VOLTS)
−0.8
0.6
V
BE(on)
@ V
CE
= 1.0 V
−0.6
V
BE(on)
@ V
CE
= −1.0 V
0.4
0.2
V
CE(sat)
@ I
C
/I
B
= 10
0
0.5
1.0
2.0
5.0
10
20
50
100
200
500
−0.4
−0.2
V
CE(sat)
@ I
C
/I
B
= 10
0
−0.5
−1.0 −2.0
−5.0
−10
−20
−50
−100 −200
−500
I
C
, COLLECTOR CURRENT (mA)
I
C
, COLLECTOR CURRENT (mA)
Figure 12. MPSA05/06 “ON” Voltages
Figure 13. MPSA55/56 “ON” Voltages
http://onsemi.com
4