EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT1602BI-82-30N-33.333330T

Description
-40 TO 85C, 7050, 25PPM, 3.0V, 3
CategoryPassive components   
File Size975KB,17 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet View All

SIT1602BI-82-30N-33.333330T Overview

-40 TO 85C, 7050, 25PPM, 3.0V, 3

SiT1602B
Low Power, Standard Frequency Oscillator
Features
Applications
52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
45
90%
Frequency Stability
F_stab
Frequency Stability and Aging
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
+25
ppm
supply voltage and load.
+50
ppm
Operating Temperature Range
+70
°C
Extended Commercial
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
1
1.3
55
2
2.5
2
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
PowerBox
Complete introduction of 12V power supply with voltage meter, terminal and emergency stop button :https://www.hackster.io/DerPandaHammer/power-in-a-box-f16849...
dcexpert DIY/Open Source Hardware
I2C bus controls RDA5807M to achieve high-fidelity reception of FM signals
Use STC8G1K08 I2C bus to control RDA5807M to achieve high-fidelity reception of FM signals. The frequency is displayed by a 0.36- inch common-anode LED digital tube. The 8G1K08 will not interfere with...
cjwjh 51mcu
Piezoelectric ceramic polarity detection system ET10
This content is originally created by EEWORLD forum user xcbaojian . If you want to reprint or use it for commercial purposes, you must obtain the author's consent and indicate the sourceThe high volt...
xcbaojian Analog electronics
I would like to ask you how to use timequest to analyze the delay time of the delay chain in FPGA.
I would like to ask you how to use timequest to analyze the delay time of the delay chain in FPGA....
夏天Yyyyy Altera SoC
Raspberry Pi PICO low-resolution thermal imager
Using the Raspberry Pi PICO and CircuitPython system, plus the AMG8833 sensor and TFT screen, you can make a thermal imager.Project website :https://www.recantha.co.uk/blog/?p=20959...
dcexpert MicroPython Open Source section
Reversible USB port
I bought a mobile power board a few days ago. I didn’t think much of it at first, but later I found that the USB A port was quite special. It can be plugged in both ways....
dcexpert Making friends through disassembly

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号