52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
–
–
–
–
–
–
–
–
45
–
–
–
90%
Frequency Stability
F_stab
Frequency Stability and Aging
–
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
–
+25
ppm
supply voltage and load.
–
+50
ppm
Operating Temperature Range
–
+70
°C
Extended Commercial
–
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
–
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
–
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
–
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
–
1
1.3
–
–
55
2
2.5
2
–
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
–
–
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 1. Electrical Characteristics (continued)
Parameters
Symbol
Min.
Typ.
–
–
87
–
–
–
–
1.8
1.8
12
14
0.5
1.3
Max.
–
30%
150
–
Unit
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE or ST
̅ ̅̅
Pin 1, OE logic high or logic low, or ST logic high
̅ ̅̅
Pin 1, ST logic low
̅ ̅̅
Condition
Input Characteristics
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
50
2
Startup Time
Enable/Disable Time
Resume Time
RMS Period Jitter
Peak-to-peak Period Jitter
RMS Phase Jitter (random)
–
–
–
–
–
T_pk
T_phj
–
–
–
–
Vdd
Vdd
k
M
ms
ns
ms
ps
ps
ps
ps
ps
ps
Startup and Resume Timing
T_start
T_oe
T_resume
T_jitt
5
138
5
Jitter
3
3
25
30
0.9
2
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
Measured from the time Vdd reaches its rated minimum value
f = 77.76 MHz. For other frequencies, T_oe = 100 ns + 3 *
cycles
Measured from the time ST pin crosses 50% threshold
̅ ̅̅
Table 2. Pin Description
Pin
Symbol
[1]
Functionality
Output Enable
H : specified frequency output
L: output is high impedance. Only output driver is disabled.
H : specified frequency output
L: output is low (weak pull down). Device goes to sleep mode. Supply
current reduces to I_std.
Any voltage between 0 and Vdd or Open : Specified frequency
output. Pin 1 has no function.
Electrical ground
Oscillator output
Power supply voltage
[2]
[1]
[1]
Top View
OE/ST/NC
VDD
1
OE/ST /NC
̅ ̅̅
Standby
No Connect
2
3
4
GND
OUT
VDD
Power
Output
Power
GND
OUT
Figure 1. Pin Assignments
Notes:
1. In OE or ST mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
̅ ̅̅
2. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
Rev 1.04
Page 2 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance
of the IC is only guaranteed within the operational specifications, not at absolute maximum rat ings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free
soldering guidelines)
Junction Temperature
[3]
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Note:
3. Exceeding this temperature for extended period of time may damage the device.
Table 4. Thermal Consideration
[4]
Package
7050
5032
3225
2520
2016
Note:
4. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Table 5. Maximum Operating Junction Temperature
[5]
Max Operating Temperature (ambient)
70°C
85°C
Maximum Operating Junction Temperature
80°C
95°C
Note:
5. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.04
Page 3 of 17
www.sitime.com
SiT1602B
Low Power, Standard Frequency Oscillator
Test Circuit and Waveform
[6]
Vdd
Vout
Test Point
tr
80% Vdd
tf
4
Power
Supply
0.1 uF
1
3
2
15pF
(including probe
and fixture
capacitance)
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/ST Function
1 kΩ
Figure 2. Test Circuit
Note:
6. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
[7]
Pin 4 Voltage
T_start
No Glitch
during start up
ST Voltage
T_resume
CLK Output
HZ
T_start: Time to start from power-off
CLK Output
HZ
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/ ST̅ Mode)
̅ ̅
Figure 5. Standby Resume Timing ( ST̅ Mode Only)
̅ ̅
Vdd
50% Vdd
OE Voltage
T_oe
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
T_oe: Time to re-enable the clock output
CLK Output
HZ
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Figure 7. OE Disable Timing (OE Mode Only)
Note:
7. SiT1602 has “no runt” pulses and “no glitch” output during startup or resume.
[i=s]This post was last edited by mars4zhu on 2022-11-3 08:50[/i]Competition and risk- taking
Record the signal of a combinational circuit in an HDL code as a clock and the impact of glitches
Two code...
[p=null, 2, center][color=rgb(51, 51, 51)][font=-apple-system-font, BlinkMacSystemFont, "][size=17px]In the past, there was a young man in the village named "Modian". He had thick eyebrows and big eye...
Evaluation of internal temperature sensor
Next , let's test the temperature sensor inside ESP32-C3 . The temperature measurement principle of this sensor is actually to measure the voltage value . The...
Learning ARM-LINUX embedded system based on LS_BBB development board Part 1 : Platform Overview
Once upon a time, a set of friendly arms Mini2440 development board led a generation of people into the ...
Flash Memory is also called flash memory, which is a non-volatile memory. Non-volatility means that data will not be lost after power failure, which involves power failure protection (explained in det...
1 Introduction
In order to increase the interest of MCU enthusiasts in learning MCU, Lingyang University of Technology Education Promotion Center launched an intelligent robot using SPCE061A as...[Details]
/*
The program mainly realizes the following functions:
Read the value of seconds from the seconds register of DS1302 ;
The value of seconds is displayed using t...[Details]
Nvidia CEO Jensen Huang has stated in public many times in recent years that "Moore's Law is dead." Although Intel and AMD executives hold different views, a report recently released by Google once a...[Details]
Apple today handed the second beta of iOS 15 and iPadOS 15 to developers for testing, and one notable change is that SharePlay is now enabled in FaceTime, allowing two users using the latest beta to ...[Details]
Infrared wireless module: 1. Hardware: infrared receiver + remote control 2. Connection method: the + and - of the receiver are connected to the VCC and GND of the microcontroller respectively, and S...[Details]
USB connection communication
1. Experimental purpose
Learn how to use USB related functions, write a program to connect and disconnect USB by pressing the specified keyboard keys.
...[Details]
1 Introduction
At present, large-capacity cable harnesses are widely used in high-end fields such as automobiles, ships, and aerospace. In order to ensure the safe and reliable use of cable harne...[Details]
Mobile Internet Device (MID) is an emerging product that integrates wireless communication and computing functions, aiming to provide higher portability than laptops and larger display screens than mo...[Details]
Multi-channel switching power supplies are widely used in various complex electronic systems with low power due to their small size and high cost performance. However, with the development of moder...[Details]
At the beginning of 2023, the chatbot ChatGPT suddenly became a phenomenon. This new type of AI software can not only chat and communicate, but can also write essays and poems, and can even make up v...[Details]
Let’s create an AI future together! Intel uses the power of its ecosystem to help developers unleash their innovation potential November 24, 2022, Beijing - Today, the 2022 Intel AI Developer Confe...[Details]
In order to coordinate the promotion of energy development and reform and strengthen energy supervision and management, the State Council's institutional reform and functional transformation plan int...[Details]
When it comes to Zotac graphics cards, most DIY players will respond with two words: overkill. This also reflects that the materials used in Zotac graphics cards are very powerful. Today we got the Z...[Details]
In order to thoroughly implement the "carbon peak and carbon neutrality" strategic deployment, develop biomass energy and renewable energy, upgrade traditional industries, eliminate pollution and p...[Details]