EEWORLDEEWORLDEEWORLD

Part Number

Search

SIT1602BC-83-XXE-66.666600Y

Description
-20 TO 70C, 7050, 50PPM, 2.25V-3
CategoryPassive components   
File Size975KB,17 Pages
ManufacturerSiTime
Environmental Compliance
Download Datasheet View All

SIT1602BC-83-XXE-66.666600Y Overview

-20 TO 70C, 7050, 50PPM, 2.25V-3

SiT1602B
Low Power, Standard Frequency Oscillator
Features
Applications
52 standard frequencies between 3.57 MHz and 77.76 MHz
100% pin-to-pin drop-in replacement to quartz-based XO
Excellent total frequency stability as low as ±20 ppm
Operating temperature from -40°C to 85°C. For 125°C and/or
-55°C options, refer to
SiT1618, SiT8918, SiT8920
Low power consumption of 3.5 mA typical at 1.8V
Standby mode for longer battery life
Fast startup time of 5 ms
LVCMOS/HCMOS compatible output
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
Instant samples with
Time Machine II
and
Field Programmable
Oscillators
Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books,
SSD, GPON, EPON, etc
Ideal for high-speed serial protocols such as: USB,
SATA, SAS, Firewire, 100M / 1G / 10G Ethernet, etc.
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
For AEC-Q100 oscillators, refer to
SiT8924
and
SiT8925
Electrical Characteristics
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics
Parameters
Output Frequency Range
Symbol
f
Min.
Typ.
Max.
Unit
Condition
Refer to
Table 13
for the exact list of supported frequencies
Frequency Range
52 standard frequencies between
MHz
3.57 MHz and 77.76 MHz
-20
-25
-50
-20
-40
1.62
2.25
2.52
2.7
2.97
2.25
45
90%
Frequency Stability
F_stab
Frequency Stability and Aging
+20
ppm
Inclusive of initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
+25
ppm
supply voltage and load.
+50
ppm
Operating Temperature Range
+70
°C
Extended Commercial
+85
°C
Industrial
Supply Voltage and Current Consumption
1.8
1.98
V
Contact
SiTime
for 1.5V support
2.5
2.75
V
2.8
3.08
V
3.0
3.3
V
3.3
3.63
V
3.63
V
3.8
4.5
mA
No load condition, f = 20 MHz, Vdd = 2.8V to 3.3V
3.7
4.2
mA
No load condition, f = 20 MHz, Vdd = 2.5V
3.5
4.1
mA
No load condition, f = 20 MHz, Vdd = 1.8V
4.2
mA
Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
4.0
mA
Vdd = 1.8 V. OE = GND, Output in high-Z state
2.6
4.3
ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
̅ ̅̅
A
1.4
2.5
ST = GND, Vdd = 2.5V, Output is weakly pulled down
̅ ̅̅
A
0.6
1.3
ST = GND, Vdd = 1.8V, Output is weakly pulled down
̅ ̅̅
A
LVCMOS Output Characteristics
1
1.3
55
2
2.5
2
%
ns
ns
ns
Vdd
All Vdds. See Duty Cycle definition in
Figure 3
and
Footnote 6
Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
Vdd =1.8V, 20% - 80%
Vdd = 2.25V - 3.63V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Operating Temperature Range
T_use
Supply Voltage
Vdd
Current Consumption
Idd
OE Disable Current
Standby Current
I_OD
I_std
Duty Cycle
Rise/Fall Time
DC
Tr, Tf
Output High Voltage
VOH
Output Low Voltage
VOL
10%
Vdd
Rev 1.04
January 30, 2018
www.sitime.com
MSP430 MCU Timer A Structure and Application Examples
1-IntroductionIntroduction to the structure of MSP430 microcontroller timer A and its application examples. 2-Timer moduleThe MSP430 series microcontroller has powerful timer resources, which play an ...
fish001 Microcontroller MCU
The development history of single-chip microcomputer and 51 series single-chip microcomputer
[size=4][color=#000000] Microcontrollers were born in 1971 and have gone through three stages: SCM, MCU, and SoC. Early SCM microcontrollers were all 8-bit or 4-bit. The most successful one was INTEL'...
Aguilera Microcontroller MCU
A brief discussion on the 9 functions and 27 applications of capacitors in power supplies
[align=center][color=rgb(85, 85, 85)][font=Microsoft Yahei][size=12px][img]http://www.hiecube.com/uploadfile/b/IJFDnPLbuuuLeI4vqkf9.jpg[ /img][/size][/font][/color][/align] [color=rgb(85, 85,85)][font...
tgd343310381 Power technology
I want a dsp audio tuning software. If there is a project that can be developed, you can take a look.
We mainly make dsp car amplifiers. We have engineers making peripheral amplifiers. Now we want to make a tuning software solution, mainly used for tuning amplifiers, tuning software for mobile phones ...
zhuhai450 TI Technology Forum
Principle and application of sound sensor
[color=rgb(102, 102, 102)][font=微软雅黑, sans-serif][size=13pt]A sound sensor is also called an acoustic sensor. It is a device or apparatus that converts mechanical vibrations propagating in gas, liquid...
xixingkeji Industrial Control Electronics
What is the difference between Solder Mask and Paste Mask?
In PCB design, you need to draw pad files. For the two layers of Solder Mask Layers and Paste Mask layers, Many people don't quite understand this, so let me explain it briefly below.Solder mask: Sold...
szjlczhang PCB Design

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号