For Standard Values Used in Capacitors, Inductors, and Resistors,
click here.
Chip Dimensions
Model
CR0603
1.60±0.10
(0.063±0.004)
0.80±0.10
(0.031±0.004)
0.45±0.10
(0.018±0.004)
0.30±0.20
(0.012±0.008)
0.30±0.20
(0.012±0.008)
Model
CR0805
2.00±0.15
(0.079±0.006)
1.25±0.15
(0.049±0.006)
0.50±0.10
(0.020±0.004)
0.40±0.20
(0.016±0.008)
0.40±0.20
(0.016±0.008)
Model
CR1206
3.20±0.25
(0.126±0.010)
1.60±0.15
(0.063±0.006)
0.60±0.15
(0.024±0.006)
0.50±0.25
(0.020±0.010)
0.50±0.20
(0.020±0.010)
DIMENSIONS:
MM
(INCHES)
Characteristic Data
I1
I1
Dimension
L
W
H
I1
I2
H
I2
L
I2
W
Resistor (Ru0
2
)
(Jumper chip is
a conductor)
Overcoat
Derating Curve
100
Rated Power (%)
80
60
40
20
0
-55
0
70
155
Alumina Substrate
Internal Electrode (Ag-Pd)
Secondary Electrode (Nickel Plated)
External Electrode
(tin-plated)
Ambient Temperature (°C)
*RoHS Directive 2002/95/EC Jan. 27, 2003 including
annex and RoHS Recast 2011/65/EU June 8, 2011.
Specifications are subject to change without notice.
The device characteristics and parameters in this data
sheet can and do vary in different applications and
actual device performance may vary over time.
Users should verify actual device performance in their
specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Performance Characteristics
Test
DC Resistance
Low Temperature
Operation
Short time
Overload
High Temperature
Exposure
Resistance to
Solder Heat
Moisture Resis-
tance
Load Life
Solderability
Terminal Strength
Current Noise
Humidity, Steady
State
Salt Spray
Vibration
Voltage Coefficient
Insulation Resis-
tance
Dielectric With-
standing Voltage
Drop Test
Bending Test
Thermal Shock
Resistance to Dry
Heat
Procedure
--
-55 °C, 1 hour “OFF”;
45 minutes "ON"
Rated Voltage x 2.5,
5 seconds:
CR0603: 100 V max.
CR0805: 300 V max.
CR1206: 400 V max.
+125 °C, 1000 hours
260 °C, 10 seconds
90-98 % RH, 10 cycles
+70 °C; 1.5 hours “ON”,
0.5 hours “OFF”; 1000 hours
+235 °C; 3 seconds
Pull Test
Quan-Tech Model 315B
+40 °C; 90-95 % RH,
1344 hours
96 hours
10-2000 Hz, 6 hours
--
Test potential: 500V
CR0603: 100 V
--
1m
5 mm/90 mm, 10 seconds
-55 °C for 30 minutes,
+155 °C for 30 minutes,
5 cycles
125 ±5 °C for 96 ±4 hours
Method
MIL-STD-202 303
EIA RS-396 4.4
MIL-R-55342D 4.7.4
EIA RS-396 4.6
MIL-R-55342D 4.7.5
EIA RS-396 4.7
MIL-R-55342D 4.7.6
EIA RS-396 4.8
MIL-R-55342D 4.7.7
MIL-STD-202 106D
EIA RS-396 4.9
MIL-STD-202 108
Condition D
EIA RS-396 4.12
MIL-STD-202 208
EIA RS-396 4.11
MIL-R-55342D 4.7.12
MIL-STD-202 308
MIL-STD-202 103B
Condition D
MIL-STD-202 101D
Condition A
MIL-STD-202 201A
MIL-STD-202 309
MIL-STD-202 302
Condition B
MIL-STD-202 301
MIL-STD-202 203B
--
IEC 60115-1-4.19
IEC 60115-1-4.23.2
Specification
MIL-R-55342D 4.7.2
MIL-R-55342D 4.7.4
Test Limits
ΔR
1%
≤±1 %
≤±(0.5 % + 0.05 Ω)
5%
≤±5.0 %
≤±(1.0 % + 0.05 Ω)
MIL-R-55342D 4.7.5
≤±(1 % + 0.05 Ω)
≤±(2 % + 0.05 Ω)
MIL-R-55342D 4.7.6
MIL-R-55342D 4.7.7
MIL-R-55342D 4.7.8
MIL-R-55342D 4.7.10
MIL-R-55342D 4.7.11
MIL-R-55342D 4.7.12
MIL-R-55342D 6.6
≤±(1.0 % + 0.05 Ω)
≤±(0.5 % + 0.05 Ω)
≤±(0.5 % + 0.05 Ω)
≤±(1.0 % + 0.05 Ω)
≤+(2.0 % + 0.1 Ω)
≤±(1.0 % + 0.05 Ω)
≤±(2.0 % + 0.05 Ω)
≤±(3.0 % + 0.1Ω)
≥95 % of area covered
≥500 g
R≤1 kW; 1 mV/V max.
R≤10 kW; 3 mV/V max.
R≤100 kW; 6 mV/V max.
R≤1 MW; 10 mV/V max.
≤±(2.5 % + 0.05 Ω)
≤±(1.0 % + 0.2 Ω)
≤±(2.5 % + 0.05 Ω
≤±(1.0 % + 0.1 Ω
--
--
--
--
--
--
--
--
--
--
≤±(0.5 % + 0.1 Ω)
≤±(1.0 % + 0.1 Ω
≤100 ppm/V
≥1 GΩ
CR0805, CR1206: ≥500 V
CR0603: ≥300 V
≤±(0.5 % + 0.1 Ω)
≤±(1 % + 0.1 Ω
≤±(1 % + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(0.5% + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(1 % + 0.05 Ω)
≤±(2 % + 0.1 Ω)
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Soldering Profile for RoHS Compliant Chip Resistors and Arrays
275
<1>
Maximum of 20 seconds between
260 °C peak
<1>
255 °C
+255 °C and +260 °C
225
220 °C
Temperature (°C)
190 °C
175
150 °C
60 - 90
seconds
Ramp Down
6 °C/second
125
60 - 120 seconds
10 seconds minimum
75
Ramp Up
3 °C/second maximum
25
0
50
100
150
Time (seconds)
200
250
300
Packaging Dimensions (Conforms to EIA RS-481A)
4.0 ± 0.1
(.157 ± .004)
B
A
3.5 ± 0.05
(.138 ± .002)
8.0 ± 0.2
(.315 ± .008)
2.0 ± 0.05
(.079 ± .002)
1.0 ± 0.2
(.040 ± .020)
2.0
(.080)
13.0 ± 0.5
(.512 ± .020)
80.0 ± 1.0
(3.150 ± .040)
4.0 ± 0.1
(.157 ± .004)
Maximum 1 mm (.040) thick
*Cumulative tolerance over 10 holes: ±0.2 mm
1.5 +0.1/-0
(.056 + .004/-0)
1.75 ± 0.1
(.059 ± .004)
20.5
(.807)
178.0 ± 2.0
(7.008 ± .080)
Series
CR0603
CR0805
CR1206
A
1.9 ± 0.2
(.075 ± .008)
2.4 ± 0.2
(.094 ± .008)
3.57 ± 0.2
(.161 ± .008)
B
1.1 ± 0.2
(.043 ± .008)
1.65 ± 0.2
(.065 ± .008)
2.00 ± 0.2
(.079 ± .008)
DIMENSIONS:
MM
(INCHES)
10.0 ± 1.5
(.394 ± .059)
Marking on reel: Part number, quantity, resistance value and tolerance, date code.
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
Resistor Markings
CR0603
CR0805
CR1206
CR0805
CR1206
CR0603
EIA-96 Marking
Marking Explanation
• E-24: 3 digits, first two digits are
significant, third digit is number of
zeros.
Letter R is decimal point.
• E-96: 4 digits, first three digits are
significant, fourth digit is number of
zeros.
Letter R is decimal point.
0603 E-96: EIA-96 marking (see table
below).
E-24 marking
Value = 10K ohms
E-96 marking
Value = 44.2K ohms
1 % marking
Value = 12.4K ohms
EIA-96 Marking for CR0603, 1 %
Code R Value
01
02
03
04
05
06
07
08
09
10
11
12
100
102
105
107
110
113
115
118
121
124
127
130
Code
13
14
15
16
17
18
19
20
21
22
23
24
R Value
133
137
140
143
147
150
154
158
162
165
169
174
Code
25
26
27
28
29
30
31
32
33
34
35
36
R Value
178
182
187
191
196
200
205
210
215
221
226
232
Code
37
38
39
40
41
42
43
44
45
46
47
48
R Value Code
237
243
249
255
261
267
274
280
287
294
301
309
49
50
51
52
53
54
55
56
57
58
59
60
R Value
316
324
332
340
348
357
365
374
383
392
402
412
Code R Value
61
62
63
64
65
66
67
68
69
70
71
72
422
432
442
453
464
475
487
499
511
523
536
549
Code
73
74
75
76
77
78
79
80
81
82
83
84
R Value
562
576
590
604
619
634
649
665
681
698
715
732
Code R Value
85
86
87
88
89
90
91
92
93
94
95
96
750
768
787
806
825
845
866
887
909
931
953
976
This table shows the first two digits for the three-digit EIA-96 part marking scheme. The third character is a letter multiplier:
Y=10
-2
X=10
-1
A=10
0
B=10
1
C=10
2
D=10
3
E=10
4
F=10
5
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
CR0603/CR0805/CR1206 - Chip Resistors
How To Order
CR 1206 - F X - 8252 E LF
Model
(CR = Chip Resistor)
Size
• 0603
• 0805
• 1206
Resistance Tolerance
F = ±1 % ................Use with “X” TCR code only for values from 10 ohms through 1 megohm;
Use with “W” TCR code only for values from 1 megohm through 10 megohms.
J = ±5 % .................Use with “W” TCR code for values from 10 ohms through 10 megohms;
Use with “Z” TCR code for values above 10 megohms through 20 megohms;
Use with “/” TCR code for zero ohm (jumper) and values from 1 ohm through 9.1 ohms.
TCR (ppm/°C)
X = ±100
W = ±200
Z = ±400
/ = Used with “J” Resistance Tolerance code for zero ohm (jumper) and values from 1 ohm through 9.1 ohms.
Resistance Value
For 1 % Tolerance:
<100
ohms...............“R” represents decimal point
(example: 24R3 = 24.3 ohms).
≥100
ohms...............First three digits are significant, fourth digit represents number of zeros to follow (example:
8252 = 82.5k ohms).
For 5 % Tolerance:
<10
ohms............. “R” represents decimal point
(example: 4R7 = 4.7 ohms).
≥10
ohms............. First two digits are significant, third digit represents number of zeros to follow
(example: 474 = 470k ohms; 000 = Jumper).
Packaging
E = Paper Tape (5,000 pcs.) on 7 ” Plastic Reel
Termination
LF = Tin-plated (RoHS Compliant)
REV. 03/15
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
1. Capacitive reactance: Xc = 1/(ωC) = 1/(2πfC)ω---------angular frequency (angular velocity)π---------pi, approximately equal to 3.14f---------frequency, the power frequency of my country's national ...
NodeMCU-BU01 Development Boardpower supply
The power supply part uses Micro USB as the power supply interface of the NodeMCU-BU01 development board. PA11\PA12 are reserved for USB function expansion. ...
[p=26, 2, left][color=#333333][color=#666666]The motor was running well, but suddenly stopped running. In this case, you must pay attention to whether there are any major changes in the load, whether ...
The automotive industry is changing. Today, tasks that can only be accomplished by internal combustion engines will be handled by hybrid, electric, or even fuel cell-powered vehicles in the future. In...
[i=s]This post was last edited by xld0932 on 2022-6-26 12:14[/i]This article will use the KEIL MDK integrated development environment to create a template project based on the N32L43XRL-STB developmen...
The software version is Altium designer 18. After drawing the PCB and laying copper, I planned to fill the teardrop, but found that the teardrop can be filled between the connected wire and the via, b...
Mouser and Molex Launch New eBook on Innovative Medical Device Design March 18, 2022 – Mouser Electronics, a leading New Product Introduction (NPI) distributor™ focused on driving industry innovati...[Details]
Acceleration circuit and its waveform
The accelerating capacitor C and the transistor input resistor R form a differential circuit. When the input signal jumps positively, it can provide a much ...[Details]
According to ANANDTECH, AMD's CTO Mark Papermaster said in an exclusive interview that TSMC has a large amount of production capacity to supply AMD. When AMD launched the high-performance Ryzens proc...[Details]
Circuit
Working principle is shown in Figure 1.
It consists of three parts:
power supply
circuit
, trigger circuit and main control circuit. After the 220V mains is stepped down...[Details]
Application of DS2450 A/D in Multiple Spots Detecting System
LIU Jianhua, ZHANG Jiancheng, CUI Yuehua, LIU Jingna
(Department of Electrical Engineering, Shijiazhuang Railway Institute ,
...[Details]
Introduction
With the continuous development of embedded technology, the ARM microcontroller of 32-bit RISC chip with high performance, low power consumption and low price has shown a strong ...[Details]
The three major A-share indices closed down slightly today, with the Shanghai Composite Index down 0.57% to 3363.11 points; the Shenzhen Component Index down 0.71% to 13915.57 points; and the ChiNext...[Details]
On November 22, Nationstar Optoelectronics stated on its investor interaction platform that the company's third-generation semiconductor products are currently in the stage of customer-cooperated dev...[Details]
UK-based redT energy and US-based Avalon Battery Corporation have announced that, subject to shareholder approval, the two companies will merge to create a leading global producer of va...[Details]
Before designing a building automation system, we must first have an accurate positioning of the design plan. That is to say, what scale should our project reach? Usually, the design goal of an int...[Details]
The serial port is relatively smooth, just pay attention to the line sequence.
This example uses the interrupt method. The query method must be very simple. It is also reflected in the interrupt serv...[Details]
Most of the Freescale series MCUs have an SPI module, which is a synchronous serial peripheral interface that allows the MCU to communicate with various peripheral devices in a serial manner.
At p...[Details]
0 Preface ARM (Advanced RISC Machines) is a general term for a class of microprocessors. ARM is a well-known company in the microprocessor industry. It has designed a large number of high-performan...[Details]
Event Preview The 2024 Green Low-Carbon Transformation and Energy Storage Technology Innovation Industry-Education Integration Seminar/CFE2024 Southern Flow Battery Energy Storage Industry-Education I...[Details]