Industrial and process control, distributed power, medical, ATE, communications,
defense and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Parameter
+IN to -IN voltage
PC to -IN voltage
PR to -IN voltage
SC to -OUT voltage
Isolation voltage
IN to OUT
IN to base
OUT to base
Operating Temperature
Storage Temperature
Pin soldering temperature
Mounting torque
Rating
-0.5 to +53
-0.5 to +7.0
-0.5 to +7.0
-0.5 to +1.5
3000
1500
500
-55 to +100
-65 to +125
500 (260)
750 (390)
5 (0.57)
Unit
V
DC
V
DC
V
DC
V
DC
V
RMS
V
RMS
V
RMS
°C
°C
°F (°C)
°F (°C)
in-lbs (N-m)
Test voltage
Test voltage
Test voltage
M-Grade
M-Grade
<5 sec; wave solder
<7 sec; hand solder
6 each
Notes
Product Overview
These DC-DC converter modules use
advanced power processing, control and
packaging technologies to provide the
performance, flexibility, reliability and cost
effectiveness of a mature power component.
High frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V24C12T100BL2
24C
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
=
- 10 to +100
- 20 to +125
C
=
- 20 to +100
- 40 to +125
T
=
- 40 to +100
- 40 to +125
H
=
- 40 to +100
- 55 to +125
M
=
- 55 to +100
- 65 to +125
V
OUT
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
B
Output Power
P
OUT
75W, 50W
125W, 100W, 50W
100W
150W, 100W, 50W
150W, 100W, 50W
150W,100W, 50W
150W, 100W, 50W
100W, 50W
150W, 100W, 50W
Pin Style
Finish
Blank:
Short
Tin/Lead
L:
Long
Tin/Lead
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Gold
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
3V3
= 3.3V
5
= 5V
8
= 8V
12
= 12V
15
= 15V
24
= 24V
28
= 28V
36
= 36V
48
= 48V
24V Micro Family
Page 1 of 15
Rev 6.5
06/2017
vicorpower.com
800 927.9474
24V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
14.8
36.3
17.5
15.3
37.8
39.6
4.0
Min
18
Typ
24
Max
36
50
17.9
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
mA
PC pin low
Modules will operate to 16V
IN
after startup at >17.9V.
Below 18V, available power is reduced to 75% of max
rating.
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
±1
±0.20
±0.005
±5
110
Unit
%
%
% /°C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT — Absolute Maximum Ratings
3.3V
5V
8V
12V
15V
24V
28V
36V
48V
-0.5 to 4.7
-0.5 to 7.0
-0.5 to 10.9
-0.5 to 16.1
-0.5 to 20.0
-0.5 to 31.7
-0.5 to 36.9
-0.5 to 47.1
-0.5 to 62.9
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application
information, please refer to output connections on page 10.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20265)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.24
0.21
10.9
2.8
48
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
24V Micro Family
Page 2 of 15
Rev 6.5
06/2017
vicorpower.com
800 927.9474
24V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20 ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30
Ω,
<30 pF
PC current = 1.0 mA
PC voltage = 5.5 V
Switch must be able to sink
≥4
mA. See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
Temperature limiting
Agency approvals
1.9
(52.8)
2.1
(58.7)
100
Min
3000
1500
500
10
2.1
(59.3)
2.3
(65.2)
115
cURus, cTÜVus, CE
2.3
(65.8)
2.5
(71.7)
Typ
Max
Unit
V
RMS
V
RMS
V
RMS
MΩ
ounces
(grams)
ounces
(grams)
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
24V Micro Family
Page 3 of 15
Rev 6.5
06/2017
vicorpower.com
800 927.9474
24V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS
3.3V
OUT
, 75W (e.g. S24C3V3C75BL, V24C3V3C75BL)
Parameter
Min
84.6
80.0
4.14
Efficiency
S24C3V3C75BL (enhanced efficiency)
V24C3V3C75BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Typ
86.2
81.6
140
4.3
4
±0.02
26.1
26.1
Max
Unit
%
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
23.1
15.8
175
4.46
6
±0.4
22.72
30.7
30.7
mV
Volts
Watts
%
Amps
Amps
Amps
3.3V
OUT
, 50W (e.g. S24C3V3C50BL, V24C3V3C50BL)
Parameter
Efficiency
S24C3V3C50BL (enhanced efficiency)
V24C3V3C50BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
82.6
75.0
4.14
Typ
84.0
79.2
240
4.3
1.6
±0.02
17.5
17.5
Max
Unit
%
300
4.46
3
±0.2
15.15
20.6
20.6
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
15.5
10.6
5V
OUT
, 125W (e.g. S24C5C125BL, V24C5C125BL)
Parameter
Efficiency
S24C5C125BL (enhanced efficiency)
V24C5C125BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
85.0
83.0
6.0
Typ
86.5
84.5
150
6.25
4.3
±0.02
28.8
28.8
Max
Unit
%
188
6.5
5.3
±0.2
25.0
33.8
33.8
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p Nominal input full load 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load nominal input
Output voltage 95% of nominal
Output voltage <250mV
0.0
25.5
17.5
5V
OUT
, 100W (e.g. S24C5C100BL, V24C5C100BL)
Parameter
Efficiency
S24C5C100BL (enhanced efficiency)
V24C5C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
85.9
84.0
6.03
Typ
87.4
85.7
100
6.25
3.2
±0.02
23
23
Max
Unit
%
125
6.47
4.8
±0.2
20
27
27
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
20.4
2
24V Micro Family
Page 4 of 15
Rev 6.5
06/2017
vicorpower.com
800 927.9474
24V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.)
5V
OUT
, 50W (e.g. S24C5C50BL, V24C5C50BL)
Parameter
Efficiency
S24C5C50BL (enhanced efficiency)
V24C5C50BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.5
83.0
6.03
Typ
87.8
84.5
80
6.25
1.3
±0.02
11.5
11.5
Max
Unit
%
100
6.47
2.1
±0.2
10
13.5
13.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
10.2
2
8V
OUT
, 100W (e.g. S24C8C100BL, V24C8C100BL)
Parameter
Efficiency
S24C8C100BL (enhanced efficiency)
V24C8C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.0
85.0
9.36
Typ
89.0
86.4
145
9.7
3
±0.02
14.4
14.4
Max
Unit
%
182
10.1
3.4
±0.2
12.5
16.9
16.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
12.7
8.75
12V
OUT
, 150W (e.g. S24C12C150BL, V24C12C150BL)
Parameter
Efficiency
S24C12C150BL (enhanced efficiency)
V24C12C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
88.0
87.5
13.8
Typ
89.5
88.8
170
14.3
3.7
±0.02
14.4
14.4
Max
Unit
%
212
14.8
4.5
±0.2
12.5
16.9
16.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p Nominal input full load 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
12.8
8.8
12V
OUT
, 100W (e.g. S24C12C100BL, V24C12C100BL)
Parameter
Efficiency
S24C12C100BL (enhanced efficiency)
V24C12C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
88.7
87.0
13.7
Typ
90.2
88.4
209
14.3
4.4
±0.02
9.59
9.59
Max
Unit
%
262
14.9
6.1
±0.2
8.33
10.9
10.9
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
The wired-and logic is a function that can be realized by connecting two output signals. In hardware, it is realized by using OC gates. If OC gates are not used, the current may be too large and burn ...
I've recently been working on a cost-reduction project that uses half-duplex mode in wired Ethernet. I searched online for related discussions and found most of the same opinions: "In half-duplex mode...
Award-winning live broadcast: Introduction to the deep learning platform based on TI JacintoClick here to enter the live broadcastLive broadcast time
March 23, 10:00-11:30amLive Topic
Introduction to ...
[size=4][color=#000000]1. Structural features [/color][/size] [size=4][color=#000000]FPGA [/color][/size] [size=4][color=#000000]a. There are a large number of logic gates and triggers in the chip, mo...
TL494 is a fixed frequency pulse width modulation circuit, which includes all the functions required for switching power supply control and is widely used in single-ended forward dual-tube, half-bridg...
Increasingly stringent design regulations for machines and equipment in industrial and medical applications necessitate the implementation of galvanic isolation in nearly all types of
electr...[Details]
"The wind and solar power curtailment rate has dropped from 7.22% in 2017 to 0!" This is the trial operation data of the Wujiangyuan Wind Farm and Zhongliangzi Photovoltaic Power Station in Guizhou...[Details]
AD8137 is a rail-to-rail output low-cost fully differential high-speed amplifier launched by ADI. It has low noise, low distortion and wide dynamic range. It can be used to drive 12-bit ADC and is ...[Details]
An essential tool for electricians: a multimeter. Today I will briefly talk about the various gears and usage tips of a multimeter. I will take this multimeter in my hand as an example. Let's take ...[Details]
Functions and features of this program: A digital clock is realized through the 8051 chip and digital tube, and the clock can be adjusted through the two buttons as shown in the figure below. The "PAU...[Details]
Silicon Labs (NASDAQ: SLAB), a leading supplier of silicon, software and solutions for a smarter, more connected world, has introduced a new SmartClockTM technology in its AEC-Q100-compliant Si5332-A...[Details]
Continue to promote sustainable development and localized innovation in China Epidemic prevention and supply guarantee, do our utmost to support the stability of the industrial chain "In the lo...[Details]
The automotive ecosystem is beginning to shift toward Zonal architecture, making vehicle functions less dependent on underlying hardware and more flexible in processing. The impact of this shift is...[Details]
1. The data area has a small space, so only variables that are frequently used or require high computing speed are placed in the data area, such as the count value in a for loop.
2. It is best to p...[Details]
On April 11, a reporter from Shell Finance learned from the official Dongfeng Motor that Dongfeng Motor has completed the research and development of a new generation of high-specific-energy solid-st...[Details]
When the microcontroller is running autonomously, it is generally executing an infinite loop program. When there is no external interference (input signal), it is basically in a closed state. For exam...[Details]
This program is designed to read the time of DS12C887. The display part only includes the minutes and seconds. It has passed the test and has detailed comments. It is very useful.
#include absacc.h...[Details]
With the continuous development of 5G, AI, large model and other technologies and intelligent manufacturing technology, the automobile industry is undergoing digital and intelligent transformation, a...[Details]
UART is usually configured with 1 start bit, 8 data bits, 1 stop bit, and no parity check. 8s105 only has UART2, and the initialization configuration is as follows: UART2_CR1_M = 0; //One start...[Details]
00H-1FH is the working register area, which contains the general register group R0-R7, and each group is divided into eight. For example, the first group is R0-R7, and the address is 00-07H; assuming...[Details]