PDP TRENCH IGBT
IRG7RA13UPbF
Key Parameters
V
CE
min
V
CE(ON)
typ. @ I
C
= 20A
I
RP
max @ T
C
= 25°C
T
J
max
C
Features
Advanced Trench IGBT Technology
Optimized for Sustain and Energy Recovery
circuits in PDP applications
Low V
CE(on)
and Energy per Pulse (E
PULSETM
)
for improved panel efficiency
High repetitive peak current capability
Lead Free package
Description
This IGBT is specifically designed for applications in
Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low V
CE(on)
and low
E
PULSE
TM
rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction
temperature and high repetitive peak current capability.
These features combine to make this IGBT a highly
efficient, robust and reliable device for PDP applications.
360
1.42
276
150
C
V
V
A
°C
G
E
E
G
n-channel
G
Gate
C
Collector
D-Pak
E
Emitter
Ordering Information
Base part number
IRG7RA13UPbF
Package Type
D-Pak
Standard Pack
Form
Quantity
Tube
75
Tape and Reel
2000
Tape and Reel Left
3000
Tape and Reel Right
3000
Complete Part Number
IRG7RA13UPbF
IRG7RA13UTRPbF
IRG7RA13UTRLPbF
IRG7RA13UTRRPbF
Absolute Maximum Ratings
V
GE
I
C
@ T
C
= 25°C
I
C
@ T
C
= 100°C
I
RP
@ T
C
= 25°C
P
D
@T
C
= 25°C
P
D
@T
C
= 100°C
T
J
T
STG
Thermal Resistance
R
JC
R
JA
Parameter
Junction-to-Case
Junction-to-Ambient (PCB Mount)
Typ.
–––
—
Max.
1.6
50
Units
°C/W
Parameter
Gate-to-Emitter Voltage
Continuous Collector Current, V
GE
@ 15V
Continuous Collector, V
GE
@ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Max.
±30
40
20
276
78
31
0.63
-40 to + 150
300
Units
V
A
W
W/°C
°C
1
www.irf.com
© 2012 International Rectifier
November 5
th
, 2012
IRG7RA13UPbF
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
BV
CES
Collector-to-Emitter Breakdown Voltage 360
–––
–––
V
V
GE
= 0V, I
CE
= 250µA
–––
0.4
–––
V/°C Reference to 25°C, I
CE
= 1mA
BV
CES
/T
J
Breakdown Voltage Temp. Coefficient
–––
1.26
1.52
V
GE
= 15V, I
CE
= 12A
–––
1.42
–––
V
GE
= 15V, I
CE
= 20A
V
CE(on)
Static Collector-to-Emitter Voltage
1.84
–––
V
GE
= 15V, I
CE
= 40A
V
–––
2.25
–––
V
GE
= 15V, I
CE
= 60A
–––
1.48
–––
V
GE
= 15V, I
CE
= 20A, T
J
= 150°C
Gate Threshold Voltage
2.2
–––
4.7
V
V
CE
= V
GE
, I
CE
= 1.0mA
V
GE(th)
–––
-10
––– mV/°C
V
GE(th)
/T
J
Gate Threshold Voltage Coefficient
–––
1.0
10
V
CE
= 360V, V
GE
= 0V
I
CES
Collector-to-Emitter Leakage Current
–––
25
150
µA V
CE
= 360V, V
GE
= 0V, T
J
= 125°C
–––
75
–––
V
CE
= 360V, V
GE
= 0V, T
J
= 150°C
Gate-to-Emitter Forward Leakage
–––
–––
100
V
GE
= 30V
I
GES
nA
Gate-to-Emitter Reverse Leakage
–––
–––
-100
V
GE
= -30V
Forward Transconductance
–––
47
–––
S
V
CE
= 25V, I
CE
= 12A
g
fe
Total Gate Charge
–––
33
–––
V
CE
= 240V, I
C
= 12A, V
GE
= 15V
Q
g
nC
Gate-to-Collector Charge
–––
12
–––
Q
gc
t
d(on)
Turn-On delay time
–––
11
–––
I
C
= 12A, V
CC
= 196V
Rise time
–––
13
–––
t
r
R
G
= 10, L=210µH
ns
T
J
= 25°C
Turn-Off delay time
–––
75
–––
t
d(off)
t
f
Fall time
–––
120
–––
t
d(on)
Turn-On delay time
–––
11
–––
I
C
= 12A, V
CC
= 196V
Rise time
–––
14
–––
t
r
R
G
= 10, L=200µH, L
S
= 150nH
ns
T
J
= 150°C
Turn-Off delay time
–––
86
–––
t
d(off)
t
f
Fall time
–––
190
–––
t
st
Shoot Through Blocking Time
100
–––
–––
ns V
CC
= 240V, V
GE
= 15V, R
G
= 5.1
–––
480
–––
L = 220nH, C= 0.20µF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1, T
J
= 25°C
E
PULSE
Energy per Pulse
µJ
–––
570
–––
L = 220nH, C= 0.20µF, V
GE
= 15V
V
CC
= 240V, R
G
= 5.1, T
J
= 100°C
ESD
Human Body Model
Class 1C
(Per JEDEC standard JESD22-A114)
Machine Model
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
Input Capacitance
–––
880
–––
V
GE
= 0V
C
ies
Output Capacitance
–––
47
–––
C
oes
pF V
CE
= 30V
Reverse Transfer Capacitance
–––
26
–––
ƒ = 1.0MHz
C
res
Internal Collector Inductance
–––
4.5
–––
Between lead,
L
C
6mm (0.25in.)
nH
from package
L
E
Internal Emitter Inductance
–––
7.5
–––
and center of die contact
Notes:
Half sine wave with duty cycle = 0.01, t
on
= 1.0µsec.
R
is measured at T
J
approximately 90°C.
Pulse width
≤
400µs; duty cycle
≤
2%.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint
and soldering techniques refer to application note #AN-994.
2
www.irf.com
© 2012 International Rectifier
November 5
th
, 2012
200
VGE = 18V
160
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
200
VGE = 18V
160
VGE = 15V
VGE = 12V
VGE = 10V
IRG7RA13UPbF
ICE (A)
ICE (A)
120
120
VGE = 8.0V
VGE = 6.0V
80
80
40
40
0
0
2
4
6
V CE (V)
8
10
0
0
2
4
6
V CE (V)
8
10
Fig 1.
Typical Output Characteristics @ 25°C
200
VGE = 18V
160
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
Fig 2.
Typical Output Characteristics @ 75°C
200
VGE = 18V
160
VGE = 15V
VGE = 12V
VGE = 10V
ICE (A)
120
VGE = 6.0V
120
VGE = 8.0V
VGE = 6.0V
80
80
40
40
0
0
2
4
6
V CE (V)
8
10
0
0
2
4
6
V CE (V)
8
10
Fig 3.
Typical Output Characteristics @ 125°C
200
Fig 4.
Typical Output Characteristics @ 150°C
14
IC = 12A
12
10
160
T J = 25°C
80
VCE (V)
ICE (A)
120
8
6
4
TJ = 25°C
TJ = 150°C
T J = 150°C
40
2
0
2
4
6
8
10
12
14
16
0
5
10
V GE (V)
15
20
V GE (V)
0
Fig 5.
Typical Transfer Characteristics
3
www.irf.com
© 2012 International Rectifier
Fig 6.
V
CE(ON)
vs. Gate Voltage
November 5
th
, 2012
40
300
250
IRG7RA13UPbF
30
Repetitive Peak Current (A)
200
150
100
50
ton= 1µs
Duty cycle = 0.01
Half Sine Wave
IC (A)
20
10
0
25
50
75
100
125
150
TC (°C)
0
25
50
75
100
125
150
Case Temperature (°C)
Fig 7.
Maximum Collector Current
vs. Case Temperature
1300
1200
1100
Energy per Pulse (µJ)
Fig 8.
Typical Repetitive Peak Current
vs. Case Temperature
1300
1200
L = 220nH
C = 0.4µF
100°C
VCC = 240V
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
1000
900
800
700
600
500
400
160
170
180
190
200
210
220
230
25°C
1100
1000
900
800
700
600
25°C
195 200 205 210 215 220 225 230 235 240
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9.
Typical E
PULSE
vs. Collector Current
1600
VCC = 240V
1400
Energy per Pulse (µJ)
100
Fig 10.
Typical E
PULSE
vs.
Collector-to-Emitter Voltage
L = 220nH
t = 1µs half sine
C= 0.4µF
100µsec
10
IC (A)
10µsec
1200
1000
800
600
400
25
50
75
100
125
150
TJ, Temperature (ºC)
C= 0.2µF
1msec
C= 0.3µF
1
Tc = 25°C
Tj = 150°C
Single Pulse
0.1
1
10
V CE (V)
100
1000
Fig 11.
E
PULSE
vs. Temperature
4
www.irf.com
© 2012 International Rectifier
Fig 12.
Forward Bias Safe Operating Area
November 5
th
, 2012
10000
IRG7RA13UPbF
20
VGE, Gate-to-Source Voltage (V)
ID= 12A
VDS = 240V
VDS = 150V
VDS = 60V
16
Capacitance (pF)
1000
Cies
12
8
100
Coes
Cres
10
0
100
200
4
0
0
10
20
30
40
QG Total Gate Charge (nC)
VCE (V)
Fig 13.
Typical Capacitance vs.
Collector-to-Emitter Voltage
10
Fig
14.
Typical Gate Charge
vs. Gate-to-Emitter Voltage
Thermal Response ( Z thJC )
1
D = 0.50
0.20
Ri
(°C/W)
R
1
R
1
J
1
2
R
2
R
2
R
3
R
3
3
R
4
R
4
C
1
2
3
4
4
C
i
(sec)
0.000006
0.000170
0.001311
0.006923
0.1
0.10
0.05
0.02
0.01
0.018744
0.575445
0.687910
0.314901
J
0.01
SINGLE PULSE
( THERMAL RESPONSE )
Ci=
iRi
Ci=
iRi
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
0.001
1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 15.
Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
www.irf.com
© 2012 International Rectifier
November 5
th
, 2012