To learn more about ON Semiconductor, please visit our website at
www.onsemi.com
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
FAN2356AMPX —6 A Synchronous Buck Regulator
September 2015
FAN2356AMPX
6 A Synchronous Buck Regulator
Features
V
IN
Range: 4.5 V to 24 V
High Efficiency: Over to 96% Peak
Continuous Output Current: 6 A
PFM Mode for Light-Load Efficiency
Excellent Line and Load Transient Response
Precision Reference: ±1% Over Temperature
Output Voltage Range: 0.6 to 5.5 V
Programmable Frequency: 200 kHz to 1.5 MHz
Programmable Soft-Start
Low Shutdown Current
Adjustable Sourcing Current Limit
Internal Boot Diode
Thermal Shutdown
Halogen and Lead Free, RoHS Compliant
Description
The FAN2356A is a highly efficient synchronous buck
regulator. The regulator is capable of operating with an
input range from 4.5 V to 24 V and supporting up to 6 A
continuous load currents.
The FAN2356 utilizes Fairchild’s constant on-time
control architecture to provide excellent transient
response and to maintain a relatively constant switching
frequency. This device utilizes Pulse Frequency
Modulation (PFM) mode to maximize light-load
efficiency by reducing switching frequency when the
inductor is operating in discontinuous conduction mode
at light loads, while clamping the minimum frequency
above the audible range with ultrasonic mode.
Switching frequency and over-current protection can
be programmed to provide a flexible solution for
various applications. Output over-voltage, under-
voltage, over-current, and thermal shutdown protections
help prevent damage to the device during fault
conditions. After thermal shutdown is activated, a
hysteresis feature restarts the device when normal