* Code C, MIL-C-22992, Left-Hand Thread. Connector designations depicted thus [ ] are for reference only and are not to be used in part number development.
BACKSHELL INTERFACE STANDARDS (See pages 15-17 for more information)
DESIG. SPEC.
SERIES
DESIG. SPEC.
SERIES
A
MIL-DTL-5015 MS3400
A
PATT 602
MIL-DTL-26482 2
B
MIL-DTL-5015 MS3100
AS81703
3
C
MIL-C-22992 MS173XX
MIL-DTL-83723 I & III
D
MIL-DTL-26482 1
40M39569
E
MIL-DTL-26500 Aluminum
DEF 5326-3
F
MIL-DTL-38999 I & II
EN 2997, 3646
40M38277
ESC 10, 11
PAN 6433-1
LN 29504
PATT 614
NFC93422 HE302
PATT 616
PAN 6432-1, -2
NFC93422
HE308, 9
DESIG. SPEC.
SERIES
G
MIL-C-28840
H
MIL-DTL-38999 III & IV
EN3645
J
MIL-C-81511 1, 2, 3 & 4
VG95329
K
MIL-DTL-83723 II
DESIG. SPEC.
L
EN3372
JN 1003
LN 29729
NFC93422
PAN 6433-2
PATT 615
VG 96912
S
PATT 105
PATT 603
PATT 608
SERIES
HE306
13
How
to Order
CONNECTOR DESIGNATOR
A THREAD*
REFERENCE
7/16 – 28 UNEF
M12 x 1 – 6H
1/2 – 20 UNF
1/2 – 28 UNEF
9/16 – 24 UNEF
M15 x 1 – 6H
5/8 – 24 UNEF
5/8 – 28 UN
11/16 – 24 UNEF
M18 x 1 – 6H
3/4 – 20 UNEF
13/16 – 20 UNEF
M22 x 1 – 6H
7/8 – 20 UNEF
7/8 – 28 UN
15/16 – 20 UNEF
M25 x 1 – 6H
1 – 20 UNEF
1 - 28 UN
1 1/16 – 18 UNEF
M28 x 1 – 6H
1 1/8 – 18 UNEF
1 1/8 – 28 UN
1 3/16 – 18 UNEF
M31 x 1 – 6H
1 1/4 – 18 UNEF
1 1.4 – 28 UN
1 5/16 – 18 UNEF
M34 x 1 - 6H
1 3/8 – 18 UNEF
1 3/8 – 28 UN
1 7/16 – 18 UNEF
M37 x 1 – 6H
1 1/2 – 18 UNEF
1 1/2 – 28 UN
1 9/16 – UNEF
1 5/8 – UNEF
1 3/4 – 18 UNS
1 7/8 – 16 UN
2 – 18 UNS
2 1/16 – 16 UNS
2 1/8 – 16 UN
2 1/4 – 16 UN
2 5/16 – 16 UNS
2 3/8 – 16 UN
2 1/2 – 16 UN
2 5/8 – 16 UN
2 3/4 – 16 UN
2 7/8 – 16 UN
3 – 16 UN
3 1/16 – 16 UN
B
DIA MAX
.590 (15.)
.650 (16.5)
.650 (16.5)
.650 (16.5)
.720 (18.3)
.770 (19.6)
.770 (19.6)
.770 (19.6)
.840 (21.3)
.890 (22.6)
.970 (24.6)
.970 (24.6)
1.030 (26.2)
1.090 (27.7)
1.030 (26.2)
1.090 (27.7)
1.150 (29.2)
1.220 (29.2)
1.150 (29.2)
1.220 (31.0)
1.280 (32.5)
1.340 (34.0)
1.280 (32.5)
1.340 (34.0)
1.410 (35.8)
1.470 (37.3)
1.410 (35.8)
1.470 (37.3
1.530 (38.9)
1.590 (40.4)
1.530 (38.9)
1.590 (40.4)
1.660 (42.2)
1.660 (42.2)
1.660 (42.2)
C
DIA MAX
.650 (16.5)
.770 (19.6)
.650 (16.5)
.770 (19.6)
.770 (19.6)
.820 (20.8)
.770 (19.6)
.890 (22.6)
.890 (22.6)
.940 (23.9)
.940 (23.9)
1.020 (29.2)
1.070 (26.2)
1.020 (25.9)
1.150 (29.2)
1.150 (29.2)
1.210 (30.7)
1.210 (30.7)
1.360 (34.5)
1.230 (31.2)
1.360 (34.5)
1.360 (34.5)
1.480 (37.6)
1.360 (34.5
1.480 (37.6)
1.530 (38.9)
1.600 (40.6)
1.480 (37.6)
1.600 (40.6)
D
DIA MAX
.770 (19.6)
E
DIA MAX
.690 (17.5)
.940 (24.8)
.690 (17.5)
How
to Order
GLENAIR
SYMBOL
A
B
C*
G*
J
LF
M
N
NC
NF
T
U
ZU**
ZN
*
**
W
N
A
M85049 SYMBOL
REFERENCE ONLY
FINISH
Cadmium Plate, Bright
Anodize, Black
Hard Coat, Anodic
Electroless Nickel
Cadmium Plate, Black
Cadmium Plate, Black
Reference Information
Standard Materials and Finishes
TABLE II - STANDARD FINISHES
SPECIFICATION(S)
AMS-QQ-P-416, Type I, Class 2
AMS-QQ-P-416, Type II, Class 3
AMS-A-8625, Type II, Class 2
AMS-A-8625, Type III, Class 1
Cadmium Plate, Olive Drab
Iridite, Gold Over Cadmium Plate Over MIL-C-5541, Class 3 AMS-QQ-P-416, Type II,
Electroless Nickel
Class 3 over AMS-C-26074, Class 4, Grade B
Cadmium Plate, Bright Over
Electroless Nickel
Cadmium Plate, Olive Drab Over
Electroless Nickel
Zinc Cobalt, Dark Olive Drab
Cadmium Plate, Olive Drab Over
Electroless Nickel
Cadmium Plate, Bright Over
Electroless Nickel
1000 Hour Corrosion Resistance
AMS-C-26074, Class 4, Grade B
AMS-QQ-P-416, Type II, Class 3 over Electroless Nickel
AMS-C-26074
96 Hour Corrosion Resistance
1000 Hour Corrosion Resistance
AMS-QQ-P-416, Type I, Class 3
ASTMB 733-90, SC2, Type I, Class 5, MIL-C-26074***
AMS-QQ-P-416, Type II, Class 3
AMS-QQ-P-416, Type II, Class 3
ASTMB 841-91, Over Electroless Nickel 1000 Hour Salt
Spray
Zinc-Nickel Alloy, Olive Drab
Anodize finish; not suitable for EMI Shielding or grounding applications.
Applicable to corrosion resisting steel backshells and accessories. Consult factory for other available finishes.
The following standard materials are used for the majority of Glenair
backshells and connector accessories. However, backshell compo-
nents are not limited to those items listed, but are representative of
the elements used in Glenair's general accessory products. Contact
Glenair for applicable specifications on items not listed below.
STANDARD MATERIALS - BACKSHELLS AND ACCESSORIES
COMPONENT
Machined components: such as backshell bodies, fabricated elbows, protective covers,
rotatable couplers, dummy stowage receptacles, lock nuts, G-spring support rings,
EMI ground rings, grommet followers, etc.
Die cast components: such as angular backshells, strain relief backshells, strain relief
bodies, strain relief saddles, special EMI ground rings, etc.
Backshells or strain reliefs: available in optional corrosion resisting steel; and
hardware: such as screws, washers, rivets, wire rope, sash chain, band straps, etc.
Elastomeric seals: such as O-rings, cable jacket seals, grommets, etc.
Anti-friction and thrust washers
Anti-rotation device
MATERIAL
Aluminum
SPECIFICATION
AMS-QQ-A-200
ASTMB221, 209
QQ-A-591
ASTMB85, 26
Corrosion Resisting Steel ASTMA582 (300 Series)
AMS-QQ-S-763
Silicone
ZZ-R-765, MIL-R-25988
Teflon
TFE
N/A
Corrosion Resistant
Material
Aluminum
BODY STRAP
Glenair offers an optional stainless steel body strap for
attaching protective covers as illustrated. To specify body
strap, add suffix letter C to the end of the part number. For
example 360AS001M1610M6C.
NOTES
On all length callouts, tolerance is ± .060 unless otherwise
specified.
Unless otherwise specified, the following other dimensional
tolerances will apply:
.xx = ± .03 (0.8)
.xxx = ± .015 (0.4)
Lengths = ± .060 (1.52)
Angles = ± 5°
Metric dimensions (mm) are indicated in parentheses
MSP430 remote upgrade function: Based on 1. Off-chip EEPROM (if the on-chip flash is large enough, it can also be used) 2. RF communication 3. Host computer software (transfer upgrade files) Summary: ...
[size=4]In communication systems, we often encounter situations where multiple numbers are accumulated. Generally, under the goal of better controlling timing, we will choose to use Wallace tree based...
I successfully used CPLD to drive MAX7219 to transmit 16-bit parameters.
I see that microcontrollers transmit 8 bits of data at a time, and I also want to use CPLD to transmit 8 bits of data.
But ther...
I'm working on car charger (27W) and wireless charger (maximum 15W) recently, but I can't pass EMC (radiation and conduction). What bothers me most is that I don't have a good design circuit for the f...
Using a 220V to 18V transformer, the voltage output of the transformer output (pins 12, 14, 17, 19) is 12V. After passing through the MB6S rectifier, the output voltage of pin 3 of SP1 is 27V, and the...
[i=s]This post was last edited by Aguilera on 2018-12-24 20:41[/i] [size=4]1. GPIO[/size] [size=4]GPxMUX (function selection register),[/size] [size=4] GPxMUX.bit=0 is configured as I/O function. GPxM...
From the perspective of 3G mobile payment, the information security requirements in 3G mobile payment are studied, and finally a 3G-based RFID identity recognition security solution is designed. ...[Details]
1. Instrument Model Agilent E8363A Network Analyzer 2. Fault phenomenon Customers have reported that the instrument currently has abnormal startup behavior and always trips after startup. 3. Faul...[Details]
This system is a wireless identification system based on digital communication principles and built using an integrated single-chip narrowband UHF transceiver. The basic working principle and hardw...[Details]
According to Nikkei reports, Apple’s iPhone 15 Pro series models to be launched in 2023 will be equipped with Sony’s latest and most advanced image sensors, which can bring better imaging quality and...[Details]
SAIC Passenger Vehicle has a new partner in the development of vehicle intelligence. Reporters learned that SAIC Passenger Vehicle and BOE Varitronix have officially signed a strategic cooperation a...[Details]
Altium, a global leader in intelligent system design automation, 3D PCB design solutions ( Altium Designer®), ECAD design data management (Altium Vault®), and embedded software development (TASKING®)...[Details]
Recently, GSMA released the latest statistical information. As of the first quarter of 2022, South Korea ranked first in the global 5G penetration rate with 44.92%. The second to fourth places were M...[Details]
Siemens joins hands with Hyundai Motor and Kia to promote digital transformation in the transportation industry • Siemens Digital Industries Software helps Hyundai Motor and Kia build next-generat...[Details]
In many cases, industrial sensors were and still are analog, with sensing elements and some way to transmit the sensing data to the controller. Data is transmitted in a unidirectional analog manner...[Details]
The US Patent and Trademark Office granted Apple a patent on Tuesday titled "Appearance Integration of Displays," which proposes changing the way displays are displayed in cars. Current displays are ...[Details]
The measuring circuit is shown in Figure 1. The principle is very simple: use a rectifier bridge to convert the AC current passing through the appliance into DC, and then use a multimeter to measu...[Details]
On November 12, the pace of electrification in the automotive industry is accelerating, and NXP has also accelerated its cooperation with local Chinese automakers. Recently, NXP announced that the ...[Details]
The MCR instruction transfers the ARM data register to the coprocessor register. If the coprocessor cannot successfully perform the operation, an undefined instruction abort will occur.
Grammar teach...[Details]
CNC systems (computer numerical control systems) and NC systems (numerical control systems) are two types of automation control systems commonly used in modern manufacturing. They are similar in ma...[Details]