EEWORLDEEWORLDEEWORLD

Part Number

Search

M38226E6XXXHP

Description
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
File Size809KB,78 Pages
ManufacturerMitsubishi
Websitehttp://www.mitsubishielectric.com/semiconductors/
Download Datasheet View All

M38226E6XXXHP Overview

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

MITSUBISHI MICROCOMPUTERS
3822 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DESCRIPTION
The 3822 group is the 8-bit microcomputer based on the 740 fam-
ily core technology.
The 3822 group has the LCD drive control circuit, an 8-channel
A-D converter, and a serial I/O as additional functions.
The various microcomputers in the 3822 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3822 group, re-
fer to the section on group expansion.
FEATURES
qBasic
machine-language instructions ...................................... 71
qThe
minimum instruction execution time ........................... 0.5 µs
(at 8 MHz oscillation frequency)
qMemory
size
ROM ................................................................. 4 K to 48 K bytes
RAM ................................................................. 192 to 1024 bytes
qProgrammable
input/output ports ............................................ 49
qSoftware
pull-up/pull-down resistors (Ports P0-P7 except port P4
0
)
qInterrupts
................................................. 17 sources, 16 vectors
(includes key input interrupt)
qTimers
........................................................... 8-bit
3, 16-bit
2
qSerial
I/O ...................... 8-bit
1 (UART or Clock-synchronized)
qA-D
converter ................................................. 8-bit
8 channels
qLCD
drive control circuit
Bias ................................................................................... 1/2, 1/3
Duty ........................................................................... 1/2, 1/3, 1/4
Common output .......................................................................... 4
Segment output ........................................................................ 32
q2
clock generating circuits
(connect to external ceramic resonator or quartz-crystal oscillator)
qPower
source voltage
In high-speed mode .................................................. 4.0 to 5.5 V
In middle-speed mode ............................................... 2.5 to 5.5 V
(Extended operating temperature version:
2.0 to 5.5 V, Ta= – 20 to 85°C
3.0 to 5.5 V, Ta= – 40 to – 20°C)
(One time PROM version: 2.5 to 5.5 V)
(M version: 2.2 to 5.5 V)
(H version: 2.0 to 5.5 V)
In low-speed mode .................................................... 2.5 to 5.5 V
(Extended operating temperature version:
2.0 to 5.5 V, Ta= – 20 to 85°C
3.0 to 5.5 V, Ta= – 40 to – 20°C)
(One time PROM version: 2.5 to 5.5 V)
(M version: 2.2 to 5.5 V)
(H version: 2.0 to 5.5 V)
qPower
dissipation
In high-speed mode .......................................................... 32 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode ............................................................ 45
µW
(at 32 kHz oscillation frequency, at 3 V power source voltage)
qOperating
temperature range................................... – 20 to 85°C
(Extended operating temperature version: – 40 to 85 °C)
APPLICATIONS
Camera, household appliances, consumer electronics, etc.
PIN CONFIGURATION (TOP VIEW)
SEG
8
SEG
9
SEG
10
SEG
11
P3
4
/SEG
12
P3
5
/SEG
13
P3
6
/SEG
14
P3
7
/SEG
15
P0
0
/SEG
16
P0
1
/SEG
17
P0
2
/SEG
18
P0
3
/SEG
19
P0
4
/SEG
20
P0
5
/SEG
21
P0
6
/SEG
22
P0
7
/SEG
23
P1
0
/SEG
24
P1
1
/SEG
25
P1
2
/SEG
26
P1
3
/SEG
27
P1
4
/SEG
28
P1
5
/SEG
29
P1
6
/SEG
30
P1
7
/SEG
31
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41
SEG
7
SEG
6
SEG
5
SEG
4
SEG
3
SEG
2
SEG
1
SEG
0
V
CC
V
REF
AV
SS
COM
3
COM
2
COM
1
COM
0
VL
3
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
40
39
38
37
36
35
34
M38224M6HXXXFP
33
32
31
30
29
28
27
26
25
P2
0
P2
1
P2
2
P2
3
P2
4
P2
5
P2
6
P2
7
V
SS
X
OUT
X
IN
P7
0
/X
COUT
P7
1
/X
CIN
RESET
P4
0
P4
1
Package type : 80P6N-A (80-pin plastic-molded QFP)
Fig. 1 M38224M6HXXXFP pin configuration
(The pin configuration of 80D0 is same as this.)
VL
2
VL
1
P6
7
/AN
7
P6
6
/AN
6
P6
5
/AN
5
P6
4
/AN
4
P6
3
/AN
3
P6
2
/AN
2
P6
1
/AN
1
P6
0
/AN
0
P5
7
/ADT
P5
6
/T
OUT
P5
5
/CNTR
1
P5
4
/CNTR
0
P5
3
/RTP
1
P5
2
/RTP
0
P5
1
/INT
3
P5
0
/INT
2
P4
7
/S
RDY
P4
6
/S
CLK
P4
5
/T
X
D
P4
4
/R
X
D
P4
3
/INT
1
P4
2
/INT
0
About the history, reasons and principles of PFC power factor correction
[size=4]What is power factor compensation and what is power factor correction[/size] [size=4] [/size] [size=4] Power factor compensation: In the 1950s, an improvement method was proposed for the low p...
qwqwqw2088 Analogue and Mixed Signal
5G RAN testing, the most comprehensive data package!
5G still has a long way to goThis year is the first year of large-scale commercial use of 5G and the first year of the 5G era (2020-2030). The curtain has just been raised on the commercial developmen...
eric_wang RF/Wirelessly
A highlight of UCOS compared with ordinary mission structures!!
When I played with assembly language before, I understood two types of program structures. One is sequential, which is from the beginning to the end. It jumps from the end to the beginning and keeps r...
long521 Embedded System
ROM and RAM of microcontroller
MCU ROM and RAM----When we select MCU, memory space must be considered as a parameter, such as ROM, RAM1. There are many types of DRAM, including SRAM, FPRAM/FastPage, EDORAM, SDRAM, DDR RAM, RDRAM, S...
QWE4562009 MCU
Implementation of the sharpening algorithm on DSP
The implementation of the sharpening algorithm on the DSP TIDM642, some of the previous work is summarized here. 1. Choice of DSP Platform 1.1 DM642 Evolution Module Select the existing DM642 Evolutio...
灞波儿奔 DSP and ARM Processors
AC sine wave boost circuit and simulation results
Recently, I have been studying the sensorless position estimation of synchronous motors. I use the high-frequency sine wave injection method to estimate the motor rotor position. In this process, the ...
灞波儿奔 Analogue and Mixed Signal

Technical ResourceMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号