This post was last edited by damiaa on 2024-6-3 12:27
【FireBeetle 2 ESP32 C6 development board】 6 modbus experiments
It is said that esp32c6 has a modbus library, which is great, although it has also been used on stm32.
Let's experiment
1. Download mb_master project routine
2. idf.py menuconfig modification
dio=》QIO 80M speed burning, 4m flash
Change its consol to usb
Change the output serial port of modbus to serial port 0 tx 17 rx 16 rts. Since I don’t use it here, I will directly assign it to 3. If you are using 485 communication, you can do it yourself. mosbus is RTU mode
3. Modify the code
Change to serial port mode here. If you use 485, don't change it. I use usb-ttl
Remove the two sentences here for easy observation. Otherwise, if the coil data is wrong, the alarm will be exited.
Modify the number of cycles to
#define MASTER_MAX_RETRY 500 //30
4. Overall code
/*
* SPDX-FileCopyrightText: 2016-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "string.h"
#include "esp_log.h"
#include "modbus_params.h" // for modbus parameters structures
#include "mbcontroller.h"
#include "sdkconfig.h"
#define MB_PORT_NUM (CONFIG_MB_UART_PORT_NUM) // Number of UART port used for Modbus connection
#define MB_DEV_SPEED (CONFIG_MB_UART_BAUD_RATE) // The communication speed of the UART
// Note: Some pins on target chip cannot be assigned for UART communication.
// See UART documentation for selected board and target to configure pins using Kconfig.
// The number of parameters that intended to be used in the particular control process
#define MASTER_MAX_CIDS num_device_parameters
// Number of reading of parameters from slave
#define MASTER_MAX_RETRY 500 //30
// Timeout to update cid over Modbus
#define UPDATE_CIDS_TIMEOUT_MS (500)
#define UPDATE_CIDS_TIMEOUT_TICS (UPDATE_CIDS_TIMEOUT_MS / portTICK_PERIOD_MS)
// Timeout between polls
#define POLL_TIMEOUT_MS (1)
#define POLL_TIMEOUT_TICS (POLL_TIMEOUT_MS / portTICK_PERIOD_MS)
// The macro to get offset for parameter in the appropriate structure
#define HOLD_OFFSET(field) ((uint16_t)(offsetof(holding_reg_params_t, field) + 1))
#define INPUT_OFFSET(field) ((uint16_t)(offsetof(input_reg_params_t, field) + 1))
#define COIL_OFFSET(field) ((uint16_t)(offsetof(coil_reg_params_t, field) + 1))
// Discrete offset macro
#define DISCR_OFFSET(field) ((uint16_t)(offsetof(discrete_reg_params_t, field) + 1))
#define STR(fieldname) ((const char*)( fieldname ))
// Options can be used as bit masks or parameter limits
#define OPTS(min_val, max_val, step_val) { .opt1 = min_val, .opt2 = max_val, .opt3 = step_val }
static const char *TAG = "MASTER_TEST";
// Enumeration of modbus device addresses accessed by master device
enum {
MB_DEVICE_ADDR1 = 1 // Only one slave device used for the test (add other slave addresses here)
};
// Enumeration of all supported CIDs for device (used in parameter definition table)
enum {
CID_INP_DATA_0 = 0,
CID_HOLD_DATA_0,
CID_INP_DATA_1,
CID_HOLD_DATA_1,
CID_INP_DATA_2,
CID_HOLD_DATA_2,
CID_HOLD_TEST_REG,
CID_RELAY_P1,
CID_RELAY_P2,
CID_DISCR_P1,
CID_COUNT
};
// Example Data (Object) Dictionary for Modbus parameters:
// The CID field in the table must be unique.
// Modbus Slave Addr field defines slave address of the device with correspond parameter.
// Modbus Reg Type - Type of Modbus register area (Holding register, Input Register and such).
// Reg Start field defines the start Modbus register number and Reg Size defines the number of registers for the characteristic accordingly.
// The Instance Offset defines offset in the appropriate parameter structure that will be used as instance to save parameter value.
// Data Type, Data Size specify type of the characteristic and its data size.
// Parameter Options field specifies the options that can be used to process parameter value (limits or masks).
// Access Mode - can be used to implement custom options for processing of characteristic (Read/Write restrictions, factory mode values and etc).
const mb_parameter_descriptor_t device_parameters[] = {
// { CID, Param Name, Units, Modbus Slave Addr, Modbus Reg Type, Reg Start, Reg Size, Instance Offset, Data Type, Data Size, Parameter Options, Access Mode}
{ CID_INP_DATA_0, STR("Data_channel_0"), STR("Volts"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 0, 2,
INPUT_OFFSET(input_data0), PARAM_TYPE_FLOAT, 4, OPTS( -10, 10, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_0, STR("Humidity_1"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 0, 2,
HOLD_OFFSET(holding_data0), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_1, STR("Temperature_1"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 2, 2,
INPUT_OFFSET(input_data1), PARAM_TYPE_FLOAT, 4, OPTS( -40, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_1, STR("Humidity_2"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 2, 2,
HOLD_OFFSET(holding_data1), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_INP_DATA_2, STR("Temperature_2"), STR("C"), MB_DEVICE_ADDR1, MB_PARAM_INPUT, 4, 2,
INPUT_OFFSET(input_data2), PARAM_TYPE_FLOAT, 4, OPTS( -40, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_DATA_2, STR("Humidity_3"), STR("%rH"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 4, 2,
HOLD_OFFSET(holding_data2), PARAM_TYPE_FLOAT, 4, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_HOLD_TEST_REG, STR("Test_regs"), STR("__"), MB_DEVICE_ADDR1, MB_PARAM_HOLDING, 10, 58,
HOLD_OFFSET(test_regs), PARAM_TYPE_ASCII, 116, OPTS( 0, 100, 1 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P1, STR("RelayP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 2, 6,
COIL_OFFSET(coils_port0), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_RELAY_P2, STR("RelayP2"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_COIL, 10, 6,
COIL_OFFSET(coils_port1), PARAM_TYPE_U8, 1, OPTS( 0x55, 0x2A, 0 ), PAR_PERMS_READ_WRITE_TRIGGER },
{ CID_DISCR_P1, STR("DiscreteInpP1"), STR("on/off"), MB_DEVICE_ADDR1, MB_PARAM_DISCRETE, 2, 7,
DISCR_OFFSET(discrete_input_port1), PARAM_TYPE_U8, 1, OPTS( 0xAA, 0x15, 0 ), PAR_PERMS_READ_WRITE_TRIGGER }
};
// Calculate number of parameters in the table
const uint16_t num_device_parameters = (sizeof(device_parameters)/sizeof(device_parameters[0]));
// The function to get pointer to parameter storage (instance) according to parameter description table
static void* master_get_param_data(const mb_parameter_descriptor_t* param_descriptor)
{
assert(param_descriptor != NULL);
void* instance_ptr = NULL;
if (param_descriptor->param_offset != 0) {
switch(param_descriptor->mb_param_type)
{
case MB_PARAM_HOLDING:
instance_ptr = ((void*)&holding_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_INPUT:
instance_ptr = ((void*)&input_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_COIL:
instance_ptr = ((void*)&coil_reg_params + param_descriptor->param_offset - 1);
break;
case MB_PARAM_DISCRETE:
instance_ptr = ((void*)&discrete_reg_params + param_descriptor->param_offset - 1);
break;
default:
instance_ptr = NULL;
break;
}
} else {
ESP_LOGE(TAG, "Wrong parameter offset for CID #%u", (unsigned)param_descriptor->cid);
assert(instance_ptr != NULL);
}
return instance_ptr;
}
// User operation function to read slave values and check alarm
static void master_operation_func(void *arg)
{
esp_err_t err = ESP_OK;
float value = 0;
bool alarm_state = false;
const mb_parameter_descriptor_t* param_descriptor = NULL;
ESP_LOGI(TAG, "Start modbus test...");
for(uint16_t retry = 0; retry <= MASTER_MAX_RETRY && (!alarm_state); retry++) {
// Read all found characteristics from slave(s)
for (uint16_t cid = 0; (err != ESP_ERR_NOT_FOUND) && cid < MASTER_MAX_CIDS; cid++)
{
// Get data from parameters description table
// and use this information to fill the characteristics description table
// and having all required fields in just one table
err = mbc_master_get_cid_info(cid, ¶m_descriptor);
if ((err != ESP_ERR_NOT_FOUND) && (param_descriptor != NULL)) {
void* temp_data_ptr = master_get_param_data(param_descriptor);
assert(temp_data_ptr);
uint8_t type = 0;
if ((param_descriptor->param_type == PARAM_TYPE_ASCII) &&
(param_descriptor->cid == CID_HOLD_TEST_REG)) {
// Check for long array of registers of type PARAM_TYPE_ASCII
err = mbc_master_get_parameter(cid, (char*)param_descriptor->param_key,
(uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
// Initialize data of test array and write to slave
if (*(uint32_t*)temp_data_ptr != 0xAAAAAAAA) {
memset((void*)temp_data_ptr, 0xAA, param_descriptor->param_size);
*(uint32_t*)temp_data_ptr = 0xAAAAAAAA;
err = mbc_master_set_parameter(cid, (char*)param_descriptor->param_key,
(uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = (0x%" PRIx32 "), write successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
*(uint32_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) write fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
} else {
err = mbc_master_get_parameter(cid, (char*)param_descriptor->param_key,
(uint8_t*)temp_data_ptr, &type);
if (err == ESP_OK) {
if ((param_descriptor->mb_param_type == MB_PARAM_HOLDING) ||
(param_descriptor->mb_param_type == MB_PARAM_INPUT)) {
value = *(float*)temp_data_ptr;
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %f (0x%" PRIx32 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
value,
*(uint32_t*)temp_data_ptr);
if (((value > param_descriptor->param_opts.max) ||
(value < param_descriptor->param_opts.min))) {
alarm_state = true;
break;
}
} else {
uint8_t state = *(uint8_t*)temp_data_ptr;
const char* rw_str = (state & param_descriptor->param_opts.opt1) ? "ON" : "OFF";
if ((state & param_descriptor->param_opts.opt2) == param_descriptor->param_opts.opt2) {
ESP_LOGI(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 ") read successful.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char*)rw_str,
*(uint8_t*)temp_data_ptr);
} else {
ESP_LOGE(TAG, "Characteristic #%u %s (%s) value = %s (0x%" PRIx8 "), unexpected value.",
param_descriptor->cid,
param_descriptor->param_key,
param_descriptor->param_units,
(const char*)rw_str,
*(uint8_t*)temp_data_ptr);
// alarm_state = true;
break;
}
if (state & param_descriptor->param_opts.opt1) {
// alarm_state = true;
break;
}
}
} else {
ESP_LOGE(TAG, "Characteristic #%u (%s) read fail, err = 0x%x (%s).",
param_descriptor->cid,
param_descriptor->param_key,
(int)err,
(char*)esp_err_to_name(err));
}
}
vTaskDelay(POLL_TIMEOUT_TICS); // timeout between polls
}
}
vTaskDelay(UPDATE_CIDS_TIMEOUT_TICS*10);
}
if (alarm_state) {
ESP_LOGI(TAG, "Alarm triggered by cid #%u.", param_descriptor->cid);
} else {
ESP_LOGE(TAG, "Alarm is not triggered after %u retries.", MASTER_MAX_RETRY);
}
ESP_LOGI(TAG, "Destroy master...");
ESP_ERROR_CHECK(mbc_master_destroy());
}
// Modbus master initialization
static esp_err_t master_init(void)
{
// Initialize and start Modbus controller
mb_communication_info_t comm = {
.port = MB_PORT_NUM,
#if CONFIG_MB_COMM_MODE_ASCII
.mode = MB_MODE_ASCII,
#elif CONFIG_MB_COMM_MODE_RTU
.mode = MB_MODE_RTU,
#endif
.baudrate = MB_DEV_SPEED,
.parity = MB_PARITY_NONE
};
void* master_handler = NULL;
esp_err_t err = mbc_master_init(MB_PORT_SERIAL_MASTER, &master_handler);
MB_RETURN_ON_FALSE((master_handler != NULL), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail.");
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller initialization fail, returns(0x%x).", (int)err);
err = mbc_master_setup((void*)&comm);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller setup fail, returns(0x%x).", (int)err);
// Set UART pin numbers
//err = uart_set_pin(MB_PORT_NUM, CONFIG_MB_UART_TXD, CONFIG_MB_UART_RXD,
// CONFIG_MB_UART_RTS, UART_PIN_NO_CHANGE);
err = uart_set_pin(MB_PORT_NUM, CONFIG_MB_UART_TXD, CONFIG_MB_UART_RXD,
UART_PIN_NO_CHANGE, UART_PIN_NO_CHANGE);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set pin failure, uart_set_pin() returned (0x%x).", (int)err);
err = mbc_master_start();
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller start fail, returned (0x%x).", (int)err);
// Set driver mode to Half Duplex
//err = uart_set_mode(MB_PORT_NUM, UART_MODE_RS485_HALF_DUPLEX);
err = uart_set_mode(MB_PORT_NUM, UART_MODE_UART);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb serial set mode failure, uart_set_mode() returned (0x%x).", (int)err);
vTaskDelay(5);
err = mbc_master_set_descriptor(&device_parameters[0], num_device_parameters);
MB_RETURN_ON_FALSE((err == ESP_OK), ESP_ERR_INVALID_STATE, TAG,
"mb controller set descriptor fail, returns(0x%x).", (int)err);
ESP_LOGI(TAG, "Modbus master stack initialized...");
return err;
}
void app_main(void)
{
// Initialization of device peripheral and objects
ESP_ERROR_CHECK(master_init());
vTaskDelay(10);
master_operation_func(NULL);
}
5. Compile and burn.
Idf.py -p COM73 flash
6. Prepare modbus slave and serial port tool MobaXterm_Personal for debugging
The configuration is as follows: Remember that the first two are 2 units and 1 floating point data. Do not exceed the range when filling in the data. You can see the code for details.
The coil (lower left) can be modified in real time to see the print result. The one on the right is a data unit area. Just open it.
Experimental results:
Thanks