doc

Junior high school physics formula

  • 2013-06-14
  • 57KB
  • Points it Requires : 1

Junior high school physics formulas Junior high school physics formulas: Physical quantity unit formula name symbol name symbol mass m kilogram kg m=pv temperature t degrees Celsius °C speed v meter/second m/sv=s/t density p kilogram/meter³ kg/m³ p=m/v force (gravity) F Newton NG=mg pressure P Pascal Pa P=F/S work W joule JW=Fs power P watt w P=W/t current I ampere AI=U/R voltage U volt VU=IR resistance R ohm R=U/I electrical work W joule JW=UIt electrical power P watt w P=W/t=UI heat Q joule JQ=cm(tt°) specific heat c joule/(kilogram°C) J/(kg°C) Speed ​​of light in vacuum 3×108 m/s g 9.8 N/kg Speed ​​of sound in air at 15°C 340 m/s Safety voltage not higher than 36 V Calculate current: I=U/R, I=P/U Calculate electrical power: P=W/t, P=IU, P=I squared R, P=U squared/R Calculate electrical work: W=I squared Rt, W=(U squared/R)*t W=UIt Calculate voltage: U=W/It U=P/IU=IR Summary of high school physics formulas Physics theorems, laws, formulas 1. Movement of a particle (1) ------ Rectilinear motion 1) Uniformly accelerated rectilinear motion 1. Average velocity V平=s/t (definition formula) 2. Useful inference Vt2-Vo2=2as 3. Intermediate velocity Vt/2=V平=(Vt+Vo)/2 4. Final velocity Vt=Vo+at 5. The speed at the intermediate position Vs/2 = [(Vo2+Vt2)/2]1/2 6. Displacement s = Vt = Vot+at2/2 = Vt/2t 7. Acceleration a = (Vt-Vo)/t {With Vo as the positive direction, if a is in the same direction as Vo (acceleration), a>0; if they are in the opposite direction, a<0} 8. Experimental inference Δs = aT2 {Δs is the difference in displacement within consecutive adjacent equal times (T)} 9. Main physical quantities and units: initial velocity (Vo): m/s; acceleration (a): m/s2; final velocity (Vt): m/s; time (t) seconds (s); displacement (s): meter (m); distance: meter; speed unit conversion: 1m/s=3.6km/h. Note: (1) Average velocity is a vector; (2) If the velocity of an object is large, the acceleration is not necessarily large; (3) a=(Vt-Vo)/t is only a measurement formula, not a deterministic formula; (4) Other related contents: particle, displacement and distance, reference system, time and moment [see Volume 1 P19]/s--t diagram, v--t diagram/speed and velocity, instantaneous velocity [see Volume 1 P24]. 2) Free fall 1. Initial velocity Vo = 0 2. Final velocity Vt = gt 3. Falling height h = gt2/2 (calculated from the Vo position downward) 4. Inference Vt2 = 2gh Note: (1) Free fall is uniformly accelerated linear motion with zero initial velocity, following the law of uniformly accelerated linear motion; (2) a = g = 9.8m/s2 ≈ 10m/s2 (the gravitational acceleration is smaller near the equator, smaller in the mountains than on the plains, and the direction is vertically downward). (3) Vertical upward motion 1. Displacement s = Vot-gt2/2 2. Final velocity Vt = Vo-gt (g = 9.8m/s2≈10m/s2) 3. Useful inference Vt2-Vo2 = -2gs 4. Maximum height of ascent Hm = Vo2/2g (measured from the point of throwing) 5. Round trip time t = 2Vo/g (time from throwing back to the original position) Note: (1) Whole process processing: It is uniformly decelerated linear motion, with upward as the positive direction and negative acceleration; (2) Segmented processing: Upward is uniformly decelerated linear motion, downward is free fall motion, which is symmetrical; (3) The ascent and fall processes are symmetrical, such as the velocities are equal and opposite at the same point. II. Motion of a particle (2) ---- Curvilinear motion, universal gravitation 1) Projectile motion 1. Horizontal velocity: Vx = Vo 2. Vertical velocity: Vy = gt 3. Horizontal displacement: x = Vot 4. Vertical displacement: y = gt2/2 5. Motion time t = (2y/g)1/2 (usually expressed as (2h/g)1/2) 6. Resultant velocity Vt = (Vx2 + Vy2)1/2 = [Vo2 + (gt)2]1/2 Angle between the direction of the resultant velocity and the horizontal: β: tgβ = Vy/Vx = gt/V0 7. Resultant displacement: s = (x2 + y2)1/2, Angle between the direction of the displacement and the horizontal: α: tgα = y/x = gt/2Vo 8. Horizontal acceleration: ax = 0; vertical acceleration: ay = g Note: (1) Projectile motion is uniformly accelerated curvilinear motion with an acceleration of g. It can usually be regarded as the synthesis of uniform linear motion in the horizontal direction and free fall motion in the vertical direction. (2) The motion time is determined by the falling height h(y) and has nothing to do with the horizontal throwing speed. (3) The relationship between θ and β is tgβ=2tgα. (4) In projectile motion, time t is the key to solving the problem. (5) An object doing curvilinear motion must have acceleration. When the direction of the velocity and the direction of the resultant force (acceleration) are not on the same line, the object is doing curvilinear motion. 2) Uniform circular motion 1. Linear velocity V = s/t = 2πr/T 2. Angular velocity ω = Φ/t = 2π/T = 2πf 3. Centripetal acceleration a = V2/r = ω2r = (2π/T)2r 4. Centripetal force Fcentre = mV2/r = mω2r = mr(2π/T)2 = mωv = Ftotal 5. Period and frequency: T = 1/f 6. Relationship between angular velocity and linear velocity: V = ωr 7. Relationship between angular velocity and rotational speed ω = 2πn (here frequency and rotational speed have the same meaning) 8. Main physical quantities and units: Arc length (s): meter (m); Angle (Φ): radian (rad); Frequency (f): Hertz (Hz); Period (T): second (s); Rotational speed (n): r/s; Radius (r): meter (m); Linear velocity (V): m/s; Angular velocity (ω): rad/s; Centripetal acceleration: m/s2. Note: (1) The centripetal force can be provided by a specific force, by the resultant force, or by the component force. Its direction is always perpendicular to the direction of velocity and points to the center of the circle. (2) For an object performing uniform circular motion, its centripetal force is equal to the resultant force, and the centripetal force only changes the direction of the velocity but not the magnitude of the velocity. Therefore, the kinetic energy of the object remains unchanged, the centripetal force does no work, but the momentum keeps changing. 3) Universal gravitation 1. Kepler\'s third law: T2/R3=K(=4π2/GM){R: orbital radius, T: period, K: constant (independent of the mass of the planet, depends on the mass of the central celestial body)} 2. Law of universal gravitation: F=Gm1m2/r2 (G=6.67×10-11N•m2/kg2, the direction is on the line connecting them) 3. Gravity and gravitational acceleration on celestial bodies: GMm/R2=mg; g=GM/R2{R: celestial body radius (m), M: celestial body mass (kg)} 4. Satellite orbital speed, angular velocity, period: V=(GM/r)1/2; ω=(GM/r3)1/2; T=2π(r3/GM)1/2{M: central celestial body mass} 5. The first (second and third) cosmic velocity V1 = (gearth rearth)1/2 = (GM/rearth)1/2 = 7.9km/s; V2 = 11.2km/s; V3 = 16.7km/s 6. Geosynchronous satellite GMm/(rearth+h)2 = m4π2(rearth+h)/T2 {h≈36000km, h: height from the earth\'s surface, rearth: radius of the earth} Note: (1) The centripetal force required for the movement of celestial bodies is provided by universal gravitation, Fdirection = Ften; (2) The law of universal gravitation can be used to estimate the mass density of celestial bodies; (3) Geosynchronous satellites can only operate over the equator, and their operating period is the same as the earth\'s rotation period; (4) When the radius of the satellite orbit becomes smaller, the potential energy becomes smaller, the kinetic energy becomes larger, the speed becomes larger, and the period becomes smaller (one for one and three for another); (5) The maximum orbital velocity and the minimum launch velocity of the earth\'s satellite are both 7.9km/s. 3. Force (common forces, force composition and decomposition) 1) Common forces 1. Gravity G = mg (direction vertically downward, g = 9.8m/s2 ≈ 10m/s2, point of action at the center of gravity, applicable near the surface of the earth) 2.Hooke\'s law F = kx {direction is along the direction of restoring deformation, k: stiffness coefficient (N/m), x: deformation (m)} 3. Sliding friction force F = μFN {opposite to the direction of relative motion of the object, μ: friction coefficient, FN: normal pressure (N)} 4. Static friction force 0≤fstatic≤fm (opposite to the direction of relative motion trend of the object, fm is the maximum static friction) 5. Universal gravitation F = Gm1m2/r2 (G = 6.67×10-11N•m2/kg2, direction is on their connecting line) 6. Electrostatic force F = kQ1Q2/r2 (k = 9.0×109N•m2/C2, direction is on their connecting line) 7. Electric field force F = Eq (E: field strength N/C, q: charge C, the electric field force on a positive charge is in the same direction as the field strength) 8. Ampere force F = BILsinθ (θ is the angle between B and L. When L⊥B: F=BIL, when B//L: F=0) 9. Lorentz force f=qVBsinθ (θ is the angle between B and V. When V⊥B: f=qVB, when V//B: f=0) Notes: (1) The spring constant k is determined by the spring itself; (2) The friction coefficient μ has nothing to do with the pressure and the contact area, but is determined by the material properties and surface conditions of the contact surface; (3) fm is slightly larger than μFN and is generally considered to be fm≈μFN; (4) Other related content: static friction (magnitude, direction) [see Volume 1, P8]; (5) Symbols and units of physical quantities B: magnetic field intensity (T), L: effective length (m), I: current intensity (A), V: velocity of charged particles (m/s), q: charge of charged particles (charged bodies) (C); (6) The directions of both Ampere force and Lorentz force are determined by the left-hand rule. 2) Composition and decomposition of forces 1. Composition of forces on the same straight line in the same direction: F = F1 + F2, in the opposite direction: F = F1-F2 (F1>F2) 2. Composition of forces at an angle to each other: F = (F12 + F22 + 2F1F2cosα)1/2 (cosine theorem) When F1⊥F2: F = (F12 + F22)1/2 3. Range of resultant force: |F1-F2|≤F≤|F1+F2| 4. Orthogonal decomposition of forces: Fx = Fcosβ, Fy = Fsinβ (β is the angle between the resultant force and the x-axis tgβ = Fy/Fx) Note: (1) The composition and decomposition of forces (vectors) follow the parallelogram rule; (2) The relationship between the resultant force and the component forces is an equivalent substitution relationship. The resultant force can be used to replace the combined action of the component forces, and vice versa. (3) In addition to the formula method, the graphical method can also be used to solve the problem. In this case, the scale must be selected and the graph must be drawn strictly. (4) When the values ​​of F1 and F2 are constant, the larger the angle between F1 and F2 (angle α), the smaller the resultant force. (5) The composition of forces on the same straight line can be taken in the positive direction along the straight line, and the direction of the force can be represented by positive and negative signs, which can be simplified into algebraic operations. IV. Dynamics (Motion and Force) 1. Newton’s First Law of Motion (Law of Inertia): Objects have inertia and always maintain a state of uniform linear motion or rest until an external force forces them to change this state. 2. Newton’s Second Law of Motion: Ftotal = ma or a = Ftotal/ma {determined by the resultant external force and in the same direction as the resultant external force} 3. Newton’s Third Law of Motion: F = -F´ {the negative sign indicates opposite directions, F and F´ act on each other, the difference between the balanced force and the action and reaction forces, practical application: recoil motion} 4. The balance of concurrent forces Ftotal = 0, generalization {orthogonal decomposition method, principle of convergence of three forces} 5. Overweight: FN>G, weightlessness: FN>r} 3. Characteristics of forced vibration frequency: f = f driving force 4. Conditions for resonance: f driving force = f solid, A = max, prevention and application of resonance [see Book 1 P175] 5. Mechanical waves, transverse waves, longitudinal waves [see Book 2 P2] 6. Wave speed v = s/t = λf = λ/T {In the process of wave propagation, one cycle propagates forward one wavelength; the wave speed is determined by the medium itself} 7. The speed of sound waves (in air) 0℃: 332m/s; 20℃: 344m/s; 30℃: 349m/s; (Sound waves are longitudinal waves) 8. The condition for obvious diffraction of waves (waves continue to propagate around obstacles or holes): the size of the obstacle or hole is smaller than the wavelength, or the difference is not much 9. The condition for interference of waves: the frequencies of the two waves are the same (constant difference, similar amplitude, and the same vibration direction) 10. Doppler effect: due to the mutual movement between the wave source and the observer, the emission frequency of the wave source and the receiving frequency are different {when they are close to each other, the receiving frequency increases, and vice versa, it decreases [see Book 2 P21]} Note: (1) The natural frequency of an object has nothing to do with the amplitude and the driving force frequency, but depends on the vibration system itself; (2) The strengthening area is where the crests meet or the troughs meet, and the weakening area is where the crests meet; (3) The wave only transmits the vibration, and the medium itself does not migrate with the wave. It is a way of transferring energy; (4) Interference and diffraction are unique to waves; (5) Vibration images and wave images; (6) Other related contents: Ultrasonic waves and their applications [see Volume 2, p. 22]/Energy conversion in vibration [see Volume 1, p. 173]. 6. Impulse and momentum (the change of force and momentum of an object) 1. Momentum: p = mv {p: momentum (kg/s), m: mass (kg), v: velocity (m/s), direction is the same as velocity} 3. Impulse: I = Ft {I: impulse (N•s), F: constant force (N), t: time of force action (s), direction is determined by F} 4. Momentum theorem: I = Δp or Ft = mvt–mvo {Δp: change in momentum Δp = mvt–mvo, which is a vector form} 5. Law of conservation of momentum: total before p = total after p or p = p\'´, it can also be m1v1+m2v2=m1v1´+m2v2´ 6. Elastic collision: Δp = 0; ΔEk = 0 {that is, the momentum and kinetic energy of the system are conserved} 7. Inelastic collision Δp=0;0<ΔEK<ΔEKm {ΔEK: lost kinetic energy, EKm: maximum kinetic energy lost} 8. Completely inelastic collision Δp=0;ΔEK=ΔEKm {after collision, they are connected as a whole} 9. Object m1 collides elastically with static object m2 with initial velocity v1: v1´=(m1-m2)v1/(m1+m2) v2´=2m1v1/(m1+m2) 10. Inference from 9-----the exchange velocity of equal mass in elastic collision (kinetic energy conservation, momentum conservation) 11. The mechanical energy loss E when a bullet m is shot into a long wooden block M at rest on a smooth horizontal ground with a horizontal velocity vo and embedded in it and moves together = mvo2/2-(M+m)vt2/2=fsrelative {vt: common velocity, f: resistance, srelative displacement of the bullet relative to the long wooden block} Note: (1) A head-on collision is also called a centripetal collision, and the direction of the velocity is on the line connecting their \"centers\"; (2) Except for kinetic energy, the above expressions are all vector operations. In the one-dimensional case, the positive direction can be taken to be transformed into algebraic operations; (3) Conditions for conservation of momentum of the system: if the net external force is zero or the system is not subject to external force, then the momentum of the system is conserved (collision problems, explosion problems, recoil problems, etc.); (4) The collision process (a system composed of objects that collide in a very short time) is regarded as conservation of momentum, and momentum is conserved during nuclear decay; (5) The explosion process is regarded as conservation of momentum, and at this time, chemical energy is converted into kinetic energy, and the kinetic energy increases; (6) Other related contents: recoil motion, rockets, the development of aerospace technology and space navigation [see Volume 1 P128]. VII. Work and Energy (Work is the measure of energy conversion) 1. Work: W = Fscosα (definition formula) {W: work (J), F: constant force (N), s: displacement (m), α: the angle between F and s} 2. Work done by gravity: Wab = mghab {m: mass of the object, g = 9.8m/s2≈10m/s2, hab: height difference between a and b (hab = ha-hb)} 3. Work done by electric field force: Wab = qUab {q: charge (C), Uab:The potential difference (V) between a and b is Uab = φa - φb. 4. Electric work: W = UIt (universal formula) {U: voltage (V), I: current (A), t: power-on time (s)} 5. ​​Power: P = W/t (definition formula) {P: power [watt (W)], W: work done in time t (J), t: time used to do work (s)} 6. The power of automobile traction: P = Fv; P level = Fv level {P: instantaneous power, P level: average power} 7. The car starts with constant power, starts with constant acceleration, and the maximum driving speed of the car (vmax = P rated / f) 8. Electric power: P = UI (universal formula) {U: circuit voltage (V), I: circuit current (A)} 9. Joule\'s law: Q = I2Rt {Q: electric heat (J), I: current intensity (A), R: resistance value (Ω), t: power-on time (s)} 10. In a pure resistance circuit, I = U/R; P = UI = U2/R = I2R; Q = W = UIt = U2t/R = I2Rt 11. Kinetic energy: Ek = mv2/2 {Ek: kinetic energy (J), m: mass of the object (kg), v: instantaneous velocity of the object (m/s)} 12. Gravitational potential energy: EP = mgh {EP: gravitational potential energy (J), g: acceleration due to gravity, h: vertical height (m) (from the zero potential energy surface)} 13. Electric potential energy: EA = qφA {EA: electric potential energy of a charged body at point A (J), q: charge (C), φA: electric potential at point A (V) (from the zero potential energy surface)} 14. Kinetic energy theorem (when positive work is done on an object, the object\'s kinetic energy increases): Wtotal = mvt2/2-mvo2/2 or Wtotal = ΔEK {Wtotal: total work done by external forces on the object, ΔEK: change in kinetic energy ΔEK = (mvt2/2-mvo2/2)} 15. Law of conservation of mechanical energy: ΔE = 0 or EK1+EP1 = EK2+EP2. It can also be mv12/2+mgh1 = mv22/2+mgh2 16. Work done by gravity and change in gravitational potential energy (work done by gravity is equal to the negative value of the increase in gravitational potential energy of the object) WG = -ΔEP Note: (1) The size of the power indicates how fast the work is done, and the amount of work done indicates the amount of energy conversion; (2) O0≤α<90O Positive work is done; 90O<α≤180O is negative work; α=90o is no work (when the direction of the force is perpendicular to the direction of displacement (velocity), the force does no work); (3) When gravity (elastic force, electric field force, molecular force) does positive work, the gravitational (elastic, electric, molecular) potential energy decreases (4) The work done by gravity and the work done by the electric field force are independent of the path (see equations 2 and 3); (5) Conditions for the conservation of mechanical energy: except for gravity (elastic force), other forces do not do work, but only convert between kinetic energy and potential energy; (6) Conversion of other units of energy: 1kWh (degrees)=3.6×106J, 1eV=1.60×10-19J; * (7) Spring elastic potential energy E=kx2/2, which is related to the stiffness coefficient and deformation. 8. Kinetic Theory of Molecules, Law of Conservation of Energy 1. Avogadro constant NA = 6.02 × 1023/mol; molecular diameter is on the order of 10-10 meters 2. Oil film method for measuring molecular diameter d = V/s {V: volume of single-molecule oil film (m3), S: surface area of ​​oil film (m)2} 3. Contents of Kinetic Theory of Molecules: Matter is composed of a large number of molecules; a large number of molecules perform irregular thermal motion; there are interactions between molecules. 4. Intermolecular attraction and repulsion (1) r < r0, f attraction < f repulsion, F molecular force manifests as repulsion (2) r = r0, f attraction = f repulsion, F molecular force = 0, E molecular potential energy = Emin (minimum value) (3) r > r0, f attraction > f repulsion, F molecular force manifests as attraction (4) r > 10r0, f attraction = f repulsion ≈ 0, F molecular force ≈ 0, E molecular potential energy ≈ 0 5. The first law of thermodynamics W + Q = ΔU {(Work and heat transfer, these two ways of changing the internal energy of an object are equivalent in effect), W: positive work done by the outside world on the object (J), Q: heat absorbed by the object (J), ΔU: increased internal energy (J), involving the first type of perpetual motion machine cannot be built [see Book 2 P40] 6. The second law of thermodynamics Kerrigan\'s statement: It is impossible to transfer heat from a low-temperature object to a high-temperature object without causing other changes (the directionality of heat conduction); Kelvin\'s statement: It is impossible to absorb heat from a single heat source and use it all to do work without causing other changes (the directionality of the conversion of mechanical energy and internal energy) {This involves the fact that the second type of perpetual motion machine cannot be built [see Volume 2, P44]} 7. The third law of thermodynamics: Thermodynamic zero cannot be reached {The lower limit of cosmic temperature: -273.15 degrees Celsius (thermodynamic zero)} Note: (1) Brownian particles are not molecules. The smaller the Brownian particles, the more obvious the Brownian motion, and the higher the temperature, the more intense it is; (2) Temperature is a sign of the average kinetic energy of molecules; 3) The attraction and repulsion between molecules exist simultaneously, and decrease as the distance between molecules increases, but the repulsion decreases faster than the attraction; (4) When molecular forces do positive work, the molecular potential energy decreases. At r0, F attraction = F repulsion and the molecular potential energy is minimum; (5) When a gas expands, the outside world does negative work on the gas, W < 0; when the temperature rises, the internal energy increases, ΔU > 0; when heat is absorbed, Q > 0 (6) The internal energy of an object refers to the sum of all the kinetic energy and potential energy of its molecules. For an ideal gas, the intermolecular force is zero and the molecular potential energy is zero. (7) r0 is the distance between molecules when they are in equilibrium. (8) Other related contents: Energy transformation and the law of constants and constancy [see Vol. 2, p. 41]/Energy development and utilization, environmental protection [see Vol. 2, p. 47]/Internal energy of objects, molecular kinetic energy, molecular potential energy [see Vol. 2, p. 47]. IX. Gas properties 1. Gas state parameters: Temperature: macroscopically, the hotness or coldness of an object; microscopically, the sign of the intensity of the irregular motion of the molecules inside an object. Relationship between thermodynamic temperature and Celsius temperature: T = t + 273 {T: thermodynamic temperature (K), t: Celsius temperature (℃)} Volume V: the space that gas molecules can occupy, unit conversion: 1m3 = 103L = 106mL Pressure p: per unit area, a large number of gas molecules frequently collide with the wall to produce a continuous and uniform pressure, standard atmospheric pressure: 1atm = 1.013 × 105Pa = 76cmHg (1Pa = 1N/m2) 2. Characteristics of gas molecular motion: large gaps between molecules; weak interaction forces except at the moment of collision; large molecular motion rate 3. Ideal gas state equation: p1V1/T1 = p2V2/T2 {PV/T = constant, T is thermodynamic temperature (K)} Note: (1) The internal energy of an ideal gas has nothing to do with its volume, but is related to temperature and the amount of substance. (2) The conditions for the validity of Formula 3 are all ideal gases of a certain mass. When using the formula, pay attention to the unit of temperature. t is Celsius (℃), and T is the thermodynamic temperature (K). 10. Electric field 1. Two kinds of charges, law of conservation of charge, elementary charge: (e=1.60×10-19C); the charge of a charged body is equal to an integer multiple of the elementary charge 2. Coulomb\'s law: F=kQ1Q2/r2 (in vacuum) {F: force between point charges (N), k: electrostatic force constant k=9.0×109N•m2/C2, Q1, Q2: charge of two point charges (C), r: distance between two point charges (m), direction is on the line connecting them, action and reaction, like charges repel each other, unlike charges attract each other} 3. Electric field strength: E=F/q (definition formula, calculation formula) {E: electric field strength (N/C), is a vector (superposition principle of electric field), q: charge of test charge (C)} 4. Electric field formed by vacuum point (source) charge E=kQ/r2 {r: distance from source charge to the location (m), Q: charge of source charge} 5. Field strength of uniform electric field E = UAB/d {UAB: voltage between points AB (V), d: distance between points AB in the direction of field strength (m)} 6. Electric field force: F = qE {F: electric field force (N), q: charge of charge affected by electric field force (C), E: electric field strength (N/C)} 7. Electric potential and potential difference: UAB = φA-φB, UAB = WAB/q = -ΔEAB/q 8. Work done by electric force: WAB=qUAB=Eqd{WAB: work done by electric force when charged body moves from A to B (J), q: charge (C), UAB: potential difference between points A and B in the electric field (V) (work done by electric force is independent of path), E: uniform electric field strength, d: distance between two points along the field strength direction (m)} 9. Electric potential energy: EA=qφA{EA: electric potential energy of charged body at point A (J), q: charge (C), φA: electric potential at point A (V)} 10.Change in electric potential energy ΔEAB = EB-EA {The difference in electric potential energy when a charged body moves from position A to position B in an electric field} 11. Work done by electric field force and change in electric potential energy ΔEAB = -WAB = -qUAB (The increment in electric potential energy is equal to the negative value of the work done by the electric field force) 12. Capacitance C = Q/U (definition formula, calculation formula) {C: capacitance (F), Q: charge (C), U: voltage (potential difference between the two plates) (V)} 13. Capacitance of a parallel plate capacitor C = εS/4πkd (S: the area facing the two plates, d: the vertical distance between the two plates, ω: dielectric constant) Common capacitors [see Book 2 P111] 14. Acceleration of charged particles in an electric field (Vo = 0): W = ΔEK or qU = mVt2/2, Vt = (2qU/m)1/2 15. Deflection of a charged particle when it enters a uniform electric field with a velocity Vo perpendicular to the electric field (ignoring the effect of gravity) Quasi-parallel electric field direction: uniform linear motion L = Vot (in parallel plates with equal but opposite charges: E = U/d) Projectile motion parallel to the electric field direction: uniform accelerated linear motion with zero initial velocity d = at2/2, a = F/m = qE/m Note: (1) When two identical charged metal balls come into contact, the law of charge distribution is: the originally oppositely charged particles are first neutralized and then divided equally, and the original amount of the same charge is divided equally; (2) The electric field lines start from the positive charge and end at the negative charge. The electric field lines do not intersect. The tangent direction is the direction of the field strength. The field strength is strong where the electric field lines are dense. The electric potential becomes lower and lower along the electric field lines. The electric field lines are perpendicular to the equipotential lines; (3) The distribution of electric field lines in common electric fields requires memorization [see Figure [Volume 2 P98]; (4) The electric field strength (vector) and electric potential (scalar) are both determined by the electric field itself, while the electric field force and electric potential energy are also related to the amount of charge carried by the charged body and the positive and negative charge. (5) A conductor in electrostatic equilibrium is an equipotential body and its surface is an equipotential surface. The electric field lines near the outer surface of the conductor are perpendicular to the conductor surface. The total field strength inside the conductor is zero. There is no net charge inside the conductor and the net charge is only distributed on the outer surface of the conductor. (6) Conversion of capacitance units: 1F = 106μF = 1012PF. (7) Electron volt (eV) is the unit of energy, 1eV = 1.60×10-19J. (8) Other related contents: electrostatic shielding [see Volume 2 P101]/oscilloscopes, oscilloscopes and their applications [see Volume 2 P114] equipotential surfaces [see Volume 2 P105]. XI. Constant current 1. Current intensity: I = q/t {I: current intensity (A), q: amount of electricity passing through the cross-section of the conductor in time t (C), t: time (s)} 2. Ohm\'s law: I = U/R {I: current intensity of the conductor (A), U: voltage across the conductor (V), R: resistance of the conductor (Ω)} 3. Resistance, resistance law: R = ρL/S {ρ: resistivity (Ω•m), L: length of the conductor (m), S: cross-sectional area of ​​the conductor (m2)} 4. Ohm\'s law for closed circuit: I = E/(r+R) or E = Ir+IR, or E = Uinside + Uoutside {I: total current in the circuit (A), E: electromotive force of the power supply (V), R: resistance of the external circuit (Ω), r: internal resistance of the power supply (Ω)} 5. Electric work and electric power: W = UIt, P = UI {W: electric work (J), U: voltage (V), I: current (A), t: time (s), P: electric power (W)} 6. Joule\'s law: Q = I2Rt {Q: electric heat (J), I: current passing through the conductor (A), R: resistance value of the conductor (Ω), t: power-on time (s)} 7. In a pure resistance circuit: Since I = U/R, W = Q, therefore W = Q = UIt = I2Rt = U2t/R 8. Total power factor, power output power, power efficiency: Ptotal = IE, Pout = IU, η = Pout/Ptotal {I: total circuit current (A), E: power electromotive force (V), U: terminal voltage (V), η: power efficiency} 9. Series/parallel circuits Series circuits (P, U are proportional to R) Parallel circuit (P, I are inversely proportional to R) Resistance relationship (series is the same and parallel is inverse) Rseries = R1 + R2 + R3 + 1/R parallel = 1/R1 + 1/R2 + 1/R3 + Current relationship Itotal = I1 = I2 = I3 Iparallel = I1 + I2 + I3 + Voltage relationship Utotal = U1 + U2 + U3 + Utotal = U1 = U2 = U3 Power distribution Ptotal = P1 + P2 + P3 + Ptotal = P1 + P2 + P3 + 10. Ohmmeter resistance measurement (1) Circuit composition (2) Measurement principle After the two test leads are short-circuited, adjust Ro to make the meter pointer fully deflected, and obtain Ig = E/(r + Rg + Ro) After connecting the measured resistor Rx, the current passing through the meter is Ix = E/(r + Rg + Ro + Rx) = E/(Rtotal + Rx) Since Ix corresponds to Rx, the resistance to be measured can be indicated. (3) Usage: mechanical zero adjustment, range selection, ohm zero adjustment, measurement reading {pay attention to the gear position (multiplier)}, and shift off. (4) Note: When measuring resistance, disconnect the original circuit, select the range so that the pointer is near the center, and re-short the ohm zero adjustment each time you change gears. 11. Volt-ampere method for measuring resistance Internal connection of ammeter: Voltage indication: U=UR+UA External connection of ammeter: Current indication: I=IR+IV Measured value of Rx=U/I=(UA+UR)/IR=RA+Rx>R True Measured value of Rx=U/I=UR/(IR+IV)=RVRx/(RV+R)>RA [or Rx>(RARV)1/2] Selected circuit condition Rx<Rx Large voltage regulation range, complex circuit, large power consumption, easy to adjust voltage Selection condition Rp

unfold

You Might Like

Uploader
雪人001
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×