pdf

New Reading on Communications: From Principles to Applications

  • 2022-04-17
  • 6.86MB
  • Points it Requires : 1

This book attempts to introduce the basic principles and applications of communication in an integrated manner. In terms of content arrangement, it first introduces the basic object to be processed in communication - signal, involving the representation and analysis of signal (spectral analysis, sampling theorem, etc.); then introduces how to use signals to represent messages, how to transmit signals accurately to achieve message transmission (analog signal communication, digital signal communication, communication capability of ideal system, etc.); then introduces the communication of non-ideal systems, how to deal with non-ideal factors and the transmission capability of non-ideal systems (Shannon capacity formula, coding principles and applications, etc.); further introduces a more specific and complex non-ideal system - wireless communication; understands what more complex non-ideal factors (wireless channel characteristics) there are, and the derived new technologies (OFDM, MIMO, etc.); finally, it ends with a selection of key technologies of LTE system, to understand what problems a standardized wireless communication system must solve, and in what form to reflect many contents in a standardized system to give full play to its application value. Each part of this book is enough to be explained in a separate book. There are also textbooks corresponding to each part in the literature. Therefore, this book will not cover everything, but will select the relatively important parts, which can be connected and echoed with each other, and those technical theories that really play a fundamental role in actual system design and technical research. Most importantly, it will try its best to explain communications in a unique style and form, what are so many theoretical technologies, why, and how to use them. This book can be used as a reference book for teachers and students of related majors (communications/electronics/information science) in colleges and universities, and is also suitable for non-related majors who intend to enter the field of communications, as well as communications industry R&D personnel who are engaged in communication theory research and actual system design. Preface Text symbols and their explanations in this book Chapter 0 Introduction to communication systems 0.1 Let’s talk about point-to-point communication first 0.1.1 The simplest communication model 0.1.2 Development based on the simplest model 0.1.3 How to score a communication system 0.2 Let’s talk about network-level communication 0.3 Focus on the development of wireless communication systems Part I Signal representation and analysis Chapter 1 What is a signal 1.1 Don’t forget to give a signal when the time comes 1.2 Energy consumption measurement of signals 1.3 Simple representation of signals - impulse decomposition Chapter 2 Signal representation theory The first round 2.1 Fourier series - not a stunning debut 2.1.1 It’s not easy to publish a paper 2.1.2 Fourier series of periodic signals 2.2 Fourier transform - isn’t it just calculating coordinates 2.2.1 Promotion - from Fourier series to Fourier transform 2.2.2 Square wave signal and sinc signal - an interview with this golden couple 2.2.3 Signal spectrum - see if you have it Tenor potential 2.2.4 Fourier transform of periodic signal 2.3 Other transformation forms - not just Fourier Chapter 3 Introduction to linear system 3.1 Basics of linear system 3.1.1 What is a linear system 3.1.2 What is a linear time-invariant system 3.2 Distortion-free system 3.2.1 It is not just this way to be called distortion-free 3.2.2 How can a linear system be distortion-free Chapter 4 Signal Representation Theory, Part 2 4.1 Sampling theorem - the link between analog and digital 4.1.1 Tracking the changes brought by sampling from the signal spectrum 4.1.2 Discovering the DNA of the signal - a special sequence of sampling points 4.1.3 Using the DNA of the signal to clone the original signal 4.1.4 The most economical sampling - sampling at the Nyquist rate 4.1.5 Implementing the sampling and reconstruction of real signals 4.2 Discrete Fourier transform - not just two sequences changing back and forth 4.2.1 Fourier transform of discrete time series (DTFT) Contents 4.2.2 Discrete Fourier Transform (DFT/IDFT) - Perfect Transformation 4.3 OFDM Basic Principles - Is it too early? Absolutely not! 4.3.1 Orthogonal signals are the basis4.3.2 Simplified signal reception and DFT4.3.3 Simplified signal transmission and IDFT4.3.4 Summary in one paragraphPart I SummaryPart II Basic Communication PrinciplesChapter 5 Start with ideal communication5.1 Ideal analog signal communication5.2 Ideal digital signal communication5.2.1 Generation - How to get digital signals from sound5.2.2 Transmission - How to transmit digital signals5.2.3 Reception - What signals are received by the receiver5.2.4 Recovery - How to restore digital signals without distortion at the receiver5.2.5 Limit - The limit transmission capacity under ideal channel5.2.6 Regression - A little explanation of ideal regression to reality5.3 There is analog in number and number in analog5.3.1 Digital-to-analog conversion5.3.2 Analog-to-digital conversionChapter 6 Always face reality6.1 Gaussian distribution - beautiful and practical6.2 White noise - the most chaotic6.3 Additive White Gaussian Noise (AWGN) Chapter 7 Signal Modulation and Demodulation 7.1 A Brief Introduction to Its Basic Ideas 7.1.1 Introduction to Modulation Methods 7.1.2 Demodulation and Performance Considerations 7.2 I/Q Quadrature Modulation 7.2.1 Natural I and Q Paths 7.2.2 Modulation Symbols Are Also Divided into Constellations Chapter 8 Basic Methods for Signal Reception and Decision Making 8.1 Performance Analysis of Additive Noise Channels 8.1.1 Correlated Reception Decision Making 8.1.2 Matched Filter Decision Making 8.1.3 Priori and Posterior Probability Decision Making 8.1.4 Average Error Probability Minimization Decision Making 8.2 Multiplicative Noise Also Joins in the Fun 8.3 Addition and Multiplication Are Inseparable Part II Summary Part 3: Information Theory Foundations Chapter 9: Shannon Entropy 9.1 The Proposition of Entropy - Different Thinking from Shannon 9.2 Data Compression Limit - An Important Application of Entropy 9.3 Discussing Conditional Entropy and Mutual Information Chapter 10: Distortionless Communication of Distorted Systems 10.1 Concrete Problem - The Chapter Title is Contradictory, Is It Wrong? 10.2 How to Communicate Error-free - The Title is Right, Everything is Possible Chapter 11: Channel Capacity: The Ultimate Transmission Capacity of a Noisy Channel 11.1 Interpretation of Shannon\'s Thinking in His 1948 Founding Work 11.1.1 Intuitive Geometric Modeling of Analog Signals 11 .1.2 Find a way to stabilize randomness 11.1.3 This is how we get the AWGN channel capacity 11.1.4 Interesting applications of geometric modeling 11.2 Getting the AWGN channel capacity from another angle 11.2.1 The continuation of distortion-free communication in a distorted system 11.2.2 The key is how to complete the last step of the transformation 11.3 Channel capacity of non-AWGN channels 11.3.1 Non-Gaussian but still additive white noise channels 11.3.2 Don\'t always use white noise, give it some color 11.4 Starting from Shannon\'s channel capacity formula 11.4 .1 The trade-off between bandwidth and power 11.4.2 Contradiction - spectral efficiency and power efficiency 11.4.3 Shannon Coding Theorem and the neglected other half 11.5 Realistic process issues in reaching channel capacity Chapter 12 Channel Coding 12.1 Basic Discussion 12.1.1 The brothers who missed the shooting championship in two Olympic Games 12.1.2 Error detection and correction capabilities of coding 12.2 Introduction to specific channel coding 12.2.1 Block codes and applications 12.2.2 Convolutional codes and applications 12.2.3 They are all one step away from Shannon\'s limit, how to choose 12.3 Cyclic Redundancy Check (CRC) 12.3.1 Why can CRC judge right and wrong? 12.3.2 What errors cannot escape the eyes of CRC? 12.3.3 Parity check is mentioned here. Part III Summary Part IV Principles of Wireless Communication Chapter 13 Wireless Channel - Wireless Communication Revolves Around It 13.1 Basic Propagation Characteristics of Wireless Channel 13.2 Ideal Wireless Channel - Free Space 13.2.1 Static Channel - Ideal in Ideal 13.2.2 Relative Motion and Doppler Shift 13.2.3 Is the Free Space Channel Unchanged? 13.3 Wireless Channel in Real Environment 13.3.1 All Roads Lead to Rome - Multipath Propagation 13.3.2 How Fast Does the Channel Change - Coherence Time to Answer 13.3.3 Time-Frequency Synchronization and Time-Frequency Coherence 13.4 Universal Model of Wireless Transmission Baseband 13.4.1 Baseband Representation of Band Signal - I/Q Modulation Resurfaces 13.4.2 Wireless Baseband characteristics of the channel - cutting off the shackles of the carrier frequency 13.4.3 How to deal with signal tailing - inter-symbol interference 13.4.4 The universal discrete system model of the baseband unifies the world 13.4.5 Extension and summary Chapter 14 Analysis of various specific channel models 14.1 Channel capacity analysis and application 14.1.1 Fixed slow fading channel - fixed income from bank deposits 14.1.2 Random slow fading channel - one-time transaction 14.1.3 Fast fading channel - long-term operation 14.1.4 Maximum ratio combining of single-transmit multiple-receive (SIMO) 14.1.5 Beamforming of multiple-transmit single-receive (MISO) 14.2 Introduction to commonly used receiving algorithms 14.2.1 Maximum likelihood receiving algorithm - intuitive and reasonable ideas 14.2.2 MRC algorithm for linear reception - eccentric useful signals 14.2.3 ZF algorithm for linear reception - just eliminate interference 14.2.4 LMMSE Algorithm for Linear Reception - Be a Peacemaker 14.2.5 Frequency Domain Equalization with Cyclic Prefix - Simple, but at a Price 14.3 Diversity Concept and Application 14.3.1 Diversity Concept - Don\'t Put All Your Eggs in One Basket 14.3.2 Time Diversity and Application Examples 14.3.3 Frequency Diversity and Application Examples 14.3.4 Space Diversity and Application Examples Chapter 15 Advanced OFDM Technology 15.1 Looking Back 15.2 How to Deal with Multipath Environment 15.3 The Impact of Time-Frequency Offset 15.3.1 Tolerance for Lateness/Early Departure 15.3.2 Never Tolerating frequency offset 15.4 Practical system parameter selection for OFDM technology 15.5 Signal PAPR characteristics - the quality favored by power amplifiers 15.5.1 Power amplifier efficiency issues 15.5.2 PAPR characteristics of single-carrier signals 15.5.3 PAPR characteristics of OFDM signals 15.5.4 How to obtain a signal with appropriate PAPR Chapter 16 Principles and applications of multi-antenna technology 16.1 First taste the benefits of multi-antenna technology 16.2 Alamouti transmit diversity scheme worth presenting separately 16.2.1 What to do if the transmitter is not well-informed 16.2. 2Alamouti’s Cleverness16.2.3Performance of Alamouti Transmit Diversity16.2.4Extension Based on Alamouti’s Idea16.3A Bigger Surprise—Spatial Multiplexing Capability16.3.1 Presentation of the Principle of Spatial Division Multiplexing I16.3.2 Presentation of the Principle of Spatial Division Multiplexing II16.4SVD Decomposition of Channel Matrix and Rapid Application16.4.1SVD Decomposition and Properties of Channel Matrix16.4.2 A Different Look at MISO Beamforming from the Perspective of SVD16.4.3 Talking about MIMO Beamforming While the Iron is Hot16.4.4More Surprises ——Looking at the spatial division multiplexing capability through SVD 16.5 Channel capacity of MIMO system 16.5.1 Channel capacity of channel singular vector system 16.5.2 The ultimate transmission capacity of general MIMO system 16.5.3 Game——Diversity capability and multiplexing capability 16.6 Discussion on signal transmission and reception algorithms 16.6.1 Signal transmission algorithm——Sing the right song on the hilltop 16.6.2 Signal reception algorithm——Take over the worry from the transmitter 16.7 Specific application of MIMO principle in different scenarios 16.7.1 Downlink multi-user MIMO——\"I want to challenge 10\" 16.7.2 Uplink Multi-User MIMO - Using the Many to Defeate the Few Part IV Summary Part V Selected Lectures on Key LTE Technologies Chapter 17 LTE Overview and Multiple Access Technologies 17.1 LTE Overview 17.2 Common Multiple Access Methods and Applications 17.2.1 I/Q Orthogonal Multiplexing - A Beginning 17.2.2 Time, Frequency, and Code Division Multiple Access - A Veteran 17.2.3 Orthogonal Frequency Division Multiple Access - In the Moment 17.2.4 Space Division Multiple Access - A Rookie 17.3 LTE Uplink and Downlink Multiple Access Methods 17.3.1 LTE Downlink Multiple Access Method: OFDMA 17.3.2 LTE Uplink Multiple Access Method: SC-FDMA Chapter 18 Uplink and Downlink Synchronization Mechanism 18.1 Network-side Radio Frame Timeline - Train Schedule 18.1.1 FDD Uplink and Downlink Radio Frame Timeline 18.1.2 TDD Uplink and Downlink Radio Frame Timeline 18.2 Downlink Synchronization Mechanism - Common Sense of Picking Up People at the Station 18.3 Uplink Synchronization Mechanism - Get the Train Early Chapter 19 Main Channel Design and Signaling Mechanism 19.1 Downlink Scheduling and HARQ 19.1.1 Downlink Physical Channel Streaming 19.1.2 Downlink HARQ and Data Retransmission 19.2 Uplink Scheduling and HARQ 19.2.1 Focus on PUCCH 19.2.2 Uplink HARQ and Data Retransmission Chapter 20 Downlink Data Transmission Mechanism 20.1 Data Bit Stream Processing Flow 20.1.1 Add CRC - Judgment of Reception Correctness 20.1.2 Channel Coding - Selecting the Appropriate Signal 20.1.3 Bit Scrambling - Randomized Interference 20.1.4 Generating Constellation Symbols - Mechanical Steps 20.1.5 Constellation Symbols to Spatial Data Streams - Grouping Actions 20.1.6 Precoding Spatial Data Streams - Disguising Each Group Again 20.1.7 Baseband Signal Generation and Radio Frequency Transmission - Departure 20.2 Downlink Reference Signal Design 20.2.1 Public Reference Signal - Sunshine 20.2.2 Dedicated Demodulation Reference Signal - VIP Customization 20.3 Introduction to transmission modes - LTE tricks 20.3.1 The first trick: single antenna transmission 20.3.2 The second trick: transmit diversity transmission 20.3.3 The third trick: open-loop space division multiplexing transmission 20.3.4 The fourth trick: closed-loop space division multiplexing transmission 20.3.5 The fifth trick: single-stream beamforming transmission 20.4 Downlink power allocation 20.4.1 The significance of power allocation 20.4.2 Good deeds should be known to others Chapter 21 Uplink data transmission mechanism 21.1 Data bit stream processing flow 21.2 Uplink reference signal design 21.2.1 Data demodulation reference signal 21.2.2 Channel sounding reference signal 21.3 Uplink power control 21.3.1 The significance of power control 21.3.2 Implementation of power control Mechanism Appendix A Communication Principles: Linear Space Theory A.1 Linear Space A.1.1 Definition and Understanding of Linear Space A.1.2 Basis of Linear Space and Vector Coordinates A.1.3 Examples of Linear Space Composition of Signals A.1.4 Linear Equations and Matrix A.2 Inner Product Space A.2.1 Definition and Understanding of Inner Product A.2.2 Important Quantitative Relations and Applications A.2.3 Coordinate Calculation of Vectors A.3 Orthogonal Principle A.3.1 What is Orthogonal A.3.2 Orthogonal Basis of Vector Space A.3.3 Orthogonal Principle A.3.4 Projection and Angle A.4 Linear Mapping A.4.1 Linear Transformation A.4.2 Orthogonal Transformation Appendix B On the Probability Foundation and Random Processes of the Application Foundation B.1 Probability Space B.2 Random Variable B.2 .1 Probabilistic description of random variables B.2.2 Statistical characteristics of random variables B.2.3 Joint probability of random variables B.2.4 Functions of random variables B.2.5 Characterization of characteristic quantities between random variables B.3 Random signals B.3.1 Random processes B.3.2 Similarity of random signals B.4 Important limit theorems B.4.1 Central limit theorem B.4.2 Law of large numbers Appendix C Part I Mathematical derivation C.1 Simple representation of signals C.1.1 Brief discussion of operations between signals C.1.2 Impulse function and signal impulse decomposition C.2 Fourier series C.3 Fourier transform C.3.1 Relationship between angular frequency and linear frequency in Fourier transform C.3.2 Properties of Fourier transform and its application C.3.3 Square wave signal and sinc Signal C.4 Start from the beginning with a different perspective - rediscover the sampling theorem C.5 Discrete Fourier transform C.5.1 Relationship between discrete sequence and its Fourier transform sampling points C.5.2 Properties and applications of discrete Fourier transform Appendix D Part III Mathematical derivation D.1 Proposal of Shannon entropy D.2 Entropy calculation of Gaussian distribution D.3 Relationship between entropy, joint entropy and conditional entropy Appendix E Part IV Mathematical derivation E.1 Capacity calculation of SISO fast fading channel E.2 Introduction to commonly used receiving algorithms E.2.1 Application of ZF algorithm to ISI channel E.2.2 Derivation of LMMSE algorithm E.3 Derivation of matrix SVD decomposition properties E.4 Channel capacity of channel singular vector system References1 Presentation of the principle of spatial division multiplexing 16.3.2 Presentation of the principle of spatial division multiplexing 216.4 SVD decomposition of the channel matrix and its rapid application 16.4.1 SVD decomposition and properties of the channel matrix 16.4.2 A different look at MISO beamforming from the perspective of SVD 16.4.3 Strike while the iron is hot and talk about MIMO beamforming 16.4.4 Are there any more surprises? - Looking at spatial division multiplexing capabilities through SVD 16.5 Channel capacity of MIMO system 16.5.1 Channel capacity of channel singular vector system 16.5.2 The ultimate transmission capacity of general MIMO system 16.5.3 Game - diversity capability and multiplexing capability 16.6 Discussion on signal transmission and reception algorithms 16.6.1 Signal transmission algorithm - sing the song on the mountain 16.6.2 Signal reception algorithm - take over the worry from the transmitter 16.7 Specific application of MIMO principle in different scenarios 16.7.1 Downlink multi-user MIMO - \"I want to challenge 10\" 16.7.2 Uplink Multi-User MIMO - Using the Many to Defeate the Few Part IV Summary Part V Selected Lectures on Key LTE Technologies Chapter 17 LTE Overview and Multiple Access Technologies 17.1 LTE Overview 17.2 Common Multiple Access Methods and Applications 17.2.1 I/Q Orthogonal Multiplexing - A Beginning 17.2.2 Time, Frequency, and Code Division Multiple Access - A Veteran 17.2.3 Orthogonal Frequency Division Multiple Access - In the Moment 17.2.4 Space Division Multiple Access - A Rookie 17.3 LTE Uplink and Downlink Multiple Access Methods 17.3.1 LTE Downlink Multiple Access Method: OFDMA 17.3.2 LTE Uplink Multiple Access Method: SC-FDMA Chapter 18 Uplink and Downlink Synchronization Mechanism 18.1 Network-side Radio Frame Timeline - Train Schedule 18.1.1 FDD Uplink and Downlink Radio Frame Timeline 18.1.2 TDD Uplink and Downlink Radio Frame Timeline 18.2 Downlink Synchronization Mechanism - Common Sense of Picking Up People at the Station 18.3 Uplink Synchronization Mechanism - Get the Train Early Chapter 19 Main Channel Design and Signaling Mechanism 19.1 Downlink Scheduling and HARQ 19.1.1 Downlink Physical Channel Streaming 19.1.2 Downlink HARQ and Data Retransmission 19.2 Uplink Scheduling and HARQ 19.2.1 Focus on PUCCH 19.2.2 Uplink HARQ and Data Retransmission Chapter 20 Downlink Data Transmission Mechanism 20.1 Data Bit Stream Processing Flow 20.1.1 Add CRC - Judgment of Reception Correctness 20.1.2 Channel Coding - Selecting the Appropriate Signal 20.1.3 Bit Scrambling - Randomized Interference 20.1.4 Generating Constellation Symbols - Mechanical Steps 20.1.5 Constellation Symbols to Spatial Data Streams - Grouping Actions 20.1.6 Precoding Spatial Data Streams - Disguising Each Group Again 20.1.7 Baseband Signal Generation and Radio Frequency Transmission - Departure 20.2 Downlink Reference Signal Design 20.2.1 Public Reference Signal - Sunshine 20.2.2 Dedicated Demodulation Reference Signal - VIP Customization 20.3 Introduction to transmission modes - LTE tricks 20.3.1 The first trick: single antenna transmission 20.3.2 The second trick: transmit diversity transmission 20.3.3 The third trick: open-loop space division multiplexing transmission 20.3.4 The fourth trick: closed-loop space division multiplexing transmission 20.3.5 The fifth trick: single-stream beamforming transmission 20.4 Downlink power allocation 20.4.1 The significance of power allocation 20.4.2 Good deeds should be known to others Chapter 21 Uplink data transmission mechanism 21.1 Data bit stream processing flow 21.2 Uplink reference signal design 21.2.1 Data demodulation reference signal 21.2.2 Channel sounding reference signal 21.3 Uplink power control 21.3.1 The significance of power control 21.3.2 Implementation of power control Mechanism Appendix A Communication Principles: Linear Space Theory A.1 Linear Space A.1.1 Definition and Understanding of Linear Space A.1.2 Basis of Linear Space and Vector Coordinates A.1.3 Examples of Linear Space Composition of Signals A.1.4 Linear Equations and Matrix A.2 Inner Product Space A.2.1 Definition and Understanding of Inner Product A.2.2 Important Quantitative Relations and Applications A.2.3 Coordinate Calculation of Vectors A.3 Orthogonal Principle A.3.1 What is Orthogonal A.3.2 Orthogonal Basis of Vector Space A.3.3 Orthogonal Principle A.3.4 Projection and Angle A.4 Linear Mapping A.4.1 Linear Transformation A.4.2 Orthogonal Transformation Appendix B On the Probability Foundation and Random Processes of the Application Foundation B.1 Probability Space B.2 Random Variable B.2 .1 Probabilistic description of random variables B.2.2 Statistical characteristics of random variables B.2.3 Joint probability of random variables B.2.4 Functions of random variables B.2.5 Characterization of characteristic quantities between random variables B.3 Random signals B.3.1 Random processes B.3.2 Similarity of random signals B.4 Important limit theorems B.4.1 Central limit theorem B.4.2 Law of large numbers Appendix C Part I Mathematical derivation C.1 Simple representation of signals C.1.1 Brief discussion of operations between signals C.1.2 Impulse function and signal impulse decomposition C.2 Fourier series C.3 Fourier transform C.3.1 Relationship between angular frequency and linear frequency in Fourier transform C.3.2 Properties of Fourier transform and its application C.3.3 Square wave signal and sinc Signal C.4 Start from the beginning with a different perspective - rediscover the sampling theorem C.5 Discrete Fourier transform C.5.1 Relationship between discrete sequence and its Fourier transform sampling points C.5.2 Properties and applications of discrete Fourier transform Appendix D Part III Mathematical derivation D.1 Proposal of Shannon entropy D.2 Entropy calculation of Gaussian distribution D.3 Relationship between entropy, joint entropy and conditional entropy Appendix E Part IV Mathematical derivation E.1 Capacity calculation of SISO fast fading channel E.2 Introduction to commonly used receiving algorithms E.2.1 Application of ZF algorithm to ISI channel E.2.2 Derivation of LMMSE algorithm E.3 Derivation of matrix SVD decomposition properties E.4 Channel capacity of channel singular vector system References1 Presentation of the principle of spatial division multiplexing 16.3.2 Presentation of the principle of spatial division multiplexing 216.4 SVD decomposition of the channel matrix and its rapid application 16.4.1 SVD decomposition and properties of the channel matrix 16.4.2 A different look at MISO beamforming from the perspective of SVD 16.4.3 Strike while the iron is hot and talk about MIMO beamforming 16.4.4 Are there any more surprises? - Looking at spatial division multiplexing capabilities through SVD 16.5 Channel capacity of MIMO system 16.5.1 Channel capacity of channel singular vector system 16.5.2 The ultimate transmission capacity of general MIMO system 16.5.3 Game - diversity capability and multiplexing capability 16.6 Discussion on signal transmission and reception algorithms 16.6.1 Signal transmission algorithm - sing the song on the mountain 16.6.2 Signal reception algorithm - take over the worry from the transmitter 16.7 Specific application of MIMO principle in different scenarios 16.7.1 Downlink multi-user MIMO - \"I want to challenge 10\" 16.7.2 Uplink Multi-User MIMO - Using the Many to Defeate the Few Part IV Summary Part V Selected Lectures on Key LTE Technologies Chapter 17 LTE Overview and Multiple Access Technologies 17.1 LTE Overview 17.2 Common Multiple Access Methods and Applications 17.2.1 I/Q Orthogonal Multiplexing - A Beginning 17.2.2 Time, Frequency, and Code Division Multiple Access - A Veteran 17.2.3 Orthogonal Frequency Division Multiple Access - In the Moment 17.2.4 Space Division Multiple Access - A Rookie 17.3 LTE Uplink and Downlink Multiple Access Methods 17.3.1 LTE Downlink Multiple Access Method: OFDMA 17.3.2 LTE Uplink Multiple Access Method: SC-FDMA Chapter 18 Uplink and Downlink Synchronization Mechanism 18.1 Network-side Radio Frame Timeline - Train Schedule 18.1.1 FDD Uplink and Downlink Radio Frame Timeline 18.1.2 TDD Uplink and Downlink Radio Frame Timeline 18.2 Downlink Synchronization Mechanism - Common Sense of Picking Up People at the Station 18.3 Uplink Synchronization Mechanism - Get the Train Early Chapter 19 Main Channel Design and Signaling Mechanism 19.1 Downlink Scheduling and HARQ 19.1.1 Downlink Physical Channel Streaming 19.1.2 Downlink HARQ and Data Retransmission 19.2 Uplink Scheduling and HARQ 19.2.1 Focus on PUCCH 19.2.2 Uplink HARQ and Data Retransmission Chapter 20 Downlink Data Transmission Mechanism 20.1 Data Bit Stream Processing Flow 20.1.1 Add CRC - Judgment of Reception Correctness 20.1.2 Channel Coding - Selecting the Appropriate Signal 20.1.3 Bit Scrambling - Randomized Interference 20.1.4 Generating Constellation Symbols - Mechanical Steps 20.1.5 Constellation Symbols to Spatial Data Streams - Grouping Actions 20.1.6 Precoding Spatial Data Streams - Disguising Each Group Again 20.1.7 Baseband Signal Generation and Radio Frequency Transmission - Departure 20.2 Downlink Reference Signal Design 20.2.1 Public Reference Signal - Sunshine 20.2.2 Dedicated Demodulation Reference Signal - VIP Customization 20.3 Introduction to transmission modes - LTE tricks 20.3.1 The first trick: single antenna transmission 20.3.2 The second trick: transmit diversity transmission 20.3.3 The third trick: open-loop space division multiplexing transmission 20.3.4 The fourth trick: closed-loop space division multiplexing transmission 20.3.5 The fifth trick: single-stream beamforming transmission 20.4 Downlink power allocation 20.4.1 The significance of power allocation 20.4.2 Good deeds should be known to others Chapter 21 Uplink data transmission mechanism 21.1 Data bit stream processing flow 21.2 Uplink reference signal design 21.2.1 Data demodulation reference signal 21.2.2 Channel sounding reference signal 21.3 Uplink power control 21.3.1 The significance of power control 21.3.2 Implementation of power control Mechanism Appendix A Communication Principles: Linear Space Theory A.1 Linear Space A.1.1 Definition and Understanding of Linear Space A.1.2 Basis of Linear Space and Vector Coordinates A.1.3 Examples of Linear Space Composition of Signals A.1.4 Linear Equations and Matrix A.2 Inner Product Space A.2.1 Definition and Understanding of Inner Product A.2.2 Important Quantitative Relations and Applications A.2.3 Coordinate Calculation of Vectors A.3 Orthogonal Principle A.3.1 What is Orthogonal A.3.2 Orthogonal Basis of Vector Space A.3.3 Orthogonal Principle A.3.4 Projection and Angle A.4 Linear Mapping A.4.1 Linear Transformation A.4.2 Orthogonal Transformation Appendix B On the Probability Foundation and Random Processes of the Application Foundation B.1 Probability Space B.2 Random Variable B.2 .1 Probabilistic description of random variables B.2.2 Statistical characteristics of random variables B.2.3 Joint probability of random variables B.2.4 Functions of random variables B.2.5 Characterization of characteristic quantities between random variables B.3 Random signals B.3.1 Random processes B.3.2 Similarity of random signals B.4 Important limit theorems B.4.1 Central limit theorem B.4.2 Law of large numbers Appendix C Part I Mathematical derivation C.1 Simple representation of signals C.1.1 Brief discussion of operations between signals C.1.2 Impulse function and signal impulse decomposition C.2 Fourier series C.3 Fourier transform C.3.1 Relationship between angular frequency and linear frequency in Fourier transform C.3.2 Properties of Fourier transform and its application C.3.3 Square wave signal and sinc Signal C.4 Start from the beginning with a different perspective - rediscover the sampling theorem C.5 Discrete Fourier transform C.5.1 Relationship between discrete sequence and its Fourier transform sampling points C.5.2 Properties and applications of discrete Fourier transform Appendix D Part III Mathematical derivation D.1 Proposal of Shannon entropy D.2 Entropy calculation of Gaussian distribution D.3 Relationship between entropy, joint entropy and conditional entropy Appendix E Part IV Mathematical derivation E.1 Capacity calculation of SISO fast fading channel E.2 Introduction to commonly used receiving algorithms E.2.1 Application of ZF algorithm to ISI channel E.2.2 Derivation of LMMSE algorithm E.3 Derivation of matrix SVD decomposition properties E.4 Channel capacity of channel singular vector system References2 Dedicated demodulation reference signal - VIP customization 20.3 Introduction to transmission mode - LTE tricks 20.3.1 The first trick: single antenna transmission 20.3.2 The second trick: transmit diversity transmission 20.3.3 The third trick: open-loop space division multiplexing transmission 20.3.4 The fourth trick: closed-loop space division multiplexing transmission 20.3.5 The fifth trick: single-stream beamforming transmission 20.4 Downlink power allocation 20.4.1 The significance of power allocation 20.4.2 Good deeds should be known to others Chapter 21 Uplink data transmission mechanism 21.1 Data bit stream processing flow 2 1.2 Design of uplink reference signal 21.2.1 Data demodulation reference signal 21.2.2 Channel sounding reference signal 21.3 Uplink power control 21.3.1 Significance of power control 21.3.2 Implementation mechanism of power control Appendix A Communication principle tool: Linear space theory A.1 Linear space A.1.1 Definition and understanding of linear space A.1.2 Basis and vector coordinates of linear space A.1.3 Examples of linear space composed of signals A.1.4 Linear equations and matrices A.2 Inner product space A.2.1 Definition and understanding of inner product A.2.2 Repetition To quantify the relationship and its application A.2.3 Calculation of vector coordinates A.3 Orthogonal principle A.3.1 What is orthogonal A.3.2 Orthogonal basis of vector space A.3.3 Orthogonal principle A.3.4 Projection and angle A.4 Linear mapping A.4.1 Linear transformation A.4.2 Orthogonal transformation Appendix B On the foundation of application: probability foundation and random process B.1 Probability space B.2 Random variables B.2.1 Probability description of random variables B.2.2 Statistical characteristics of random variables B.2.3 Joint probability of random variables B.2.4 Functions of random variables B.2 .5 Characterization of characteristic quantities between random variables B.3 Random signals B.3.1 Random processes B.3.2 Similarity of random signals B.4 Important limit theorems B.4.1 Central limit theorem B.4.2 Law of large numbers Appendix C Part I Mathematical derivation C.1 Simple representation of signals C.1.1 Brief discussion of operations between signals C.1.2 Impulse function and signal impulse decomposition C.2 Fourier series C.3 Fourier transform C.3.1 Relationship between angular frequency and line frequency in Fourier transform C.3.2 Properties of Fourier transform and its application C.3.3 Square wave signal and sinc Signal C.4 Start from the beginning with a different perspective - rediscover the sampling theorem C.5 Discrete Fourier transform C.5.1 Relationship between discrete sequence and its Fourier transform sampling points C.5.2 Properties and applications of discrete Fourier transform Appendix D Part III Mathematical derivation D.1 Proposal of Shannon entropy D.2 Entropy calculation of Gaussian distribution D.3 Relationship between entropy, joint entropy and conditional entropy Appendix E Part IV Mathematical derivation E.1 Capacity calculation of SISO fast fading channel E.2 Introduction to commonly used receiving algorithms E.2.1 Application of ZF algorithm to ISI channel E.2.2 Derivation of LMMSE algorithm E.3 Derivation of matrix SVD decomposition properties E.4 Channel capacity of channel singular vector system References2 Dedicated demodulation reference signal - VIP customization 20.3 Introduction to transmission mode - LTE tricks 20.3.1 The first trick: single antenna transmission 20.3.2 The second trick: transmit diversity transmission 20.3.3 The third trick: open-loop space division multiplexing transmission 20.3.4 The fourth trick: closed-loop space division multiplexing transmission 20.3.5 The fifth trick: single-stream beamforming transmission 20.4 Downlink power allocation 20.4.1 The significance of power allocation 20.4.2 Good deeds should be known to others Chapter 21 Uplink data transmission mechanism 21.1 Data bit stream processing flow 2 1.2 Design of uplink reference signal 21.2.1 Data demodulation reference signal 21.2.2 Channel sounding reference signal 21.3 Uplink power control 21.3.1 Significance of power control 21.3.2 Implementation mechanism of power control Appendix A Communication principle tool: Linear space theory A.1 Linear space A.1.1 Definition and understanding of linear space A.1.2 Basis and vector coordinates of linear space A.1.3 Examples of linear space composed of signals A.1.4 Linear equations and matrices A.2 Inner product space A.2.1 Definition and understanding of inner product A.2.2 Repetition To quantify the relationship and its application A.2.3 Calculation of vector coordinates A.3 Orthogonal principle A.3.1 What is orthogonal A.3.2 Orthogonal basis of vector space A.3.3 Orthogonal principle A.3.4 Projection and angle A.4 Linear mapping A.4.1 Linear transformation A.4.2 Orthogonal transformation Appendix B On the foundation of application: probability foundation and random process B.1 Probability space B.2 Random variables B.2.1 Probability description of random variables B.2.2 Statistical characteristics of random variables B.2.3 Joint probability of random variables B.2.4 Functions of random variables B.2 .5 Characterization of characteristic quantities between random variables B.3 Random signals B.3.1 Random processes B.3.2 Similarity of random signals B.4 Important limit theorems B.4.1 Central limit theorem B.4.2 Law of large numbers Appendix C Part I Mathematical derivation C.1 Simple representation of signals C.1.1 Brief discussion of operations between signals C.1.2 Impulse function and signal impulse decomposition C.2 Fourier series C.3 Fourier transform C.3.1 Relationship between angular frequency and line frequency in Fourier transform C.3.2 Properties of Fourier transform and its application C.3.3 Square wave signal and sinc Signal C.4 Start from the beginning with a different perspective - rediscover the sampling theorem C.5 Discrete Fourier transform C.5.1 Relationship between discrete sequence and its Fourier transform sampling points C.5.2 Properties and applications of discrete Fourier transform Appendix D Part III Mathematical derivation D.1 Proposal of Shannon entropy D.2 Entropy calculation of Gaussian distribution D.3 Relationship between entropy, joint entropy and conditional entropy Appendix E Part IV Mathematical derivation E.1 Capacity calculation of SISO fast fading channel E.2 Introduction to commonly used receiving algorithms E.2.1 Application of ZF algorithm to ISI channel E.2.2 Derivation of LMMSE algorithm E.3 Derivation of matrix SVD decomposition properties E.4 Channel capacity of channel singular vector system References

unfold

You Might Like

Uploader
sigma
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×