pdf

Network Traffic Prediction Model Based on Wavelet Transform

  • 2013-09-22
  • 242.73KB
  • Points it Requires : 2

Current research has found that actual network traffic has obvious fractal characteristics. The multi-fractal characteristics of traffic have a very important impact on network performance. It is necessary to establish an actual network business model based on multi-fractal characteristics that can simultaneously predict long-correlation and short-correlation characteristics. The AR, ARMA and other models can predict short-correlation data well but have low prediction accuracy for long-correlation data. In combination with wavelet transform, the actual data correlation can be removed to establish a new prediction model, which also has relatively high prediction accuracy for long-correlation data. The improved model overcomes the disadvantage of the FARIMA model\'s relatively large amount of calculation and maintains the simplicity of the algorithm. Keywords: multi-fractal; long-correlation; wavelet; prediction

unfold

You Might Like

Uploader
nishisb
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×