pdf

Clustering of medical web pages based on latent semantic differences

  • 2013-09-22
  • 135.52KB
  • Points it Requires : 2

When the global model and local model of latent semantic indexing are used to represent medical web pages, the inter-class inclusion of fuzzy clustering results is very large. This paper proposes a new latent semantic difference model, which extracts the text from medical web pages and represents them using the global model, local model and difference model respectively, and uses the FCM algorithm to cluster and calculate the inter-class inclusion. The experiment found that when clustering the given 5 categories of medical web pages, the inter-class inclusion using the difference model is on average about 85% of the global model and 80% of the local model. Keywords: latent semantic indexing; difference model; text mining; FCM clustering; inclusion

unfold

You Might Like

Uploader
mamselc
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×