pdf

A review of deep learning applications in traffic safety analysis

  • 2024-09-04
  • 16.95MB
  • Points it Requires : 1

深度学习在交通安全分析领域的应用综述

This paper explores Deep Learning (DL) methods that are used or have the potential to be used for

traffic video analysis, emphasizing driving safety for both Autonomous Vehicles (AVs) and humanoperated vehicles. We present a typical processing pipeline, which can be used to understand and interpret traffic videos by extracting operational safety metrics and providing general hints and guidelines to improve traffic safety. This processing framework includes several steps, including video

enhancement, video stabilization, semantic and incident segmentation, object detection and classification, trajectory extraction, speed estimation, event analysis, modeling and anomaly detection. Our

main goal is to guide traffic analysts to develop their own custom-built processing frameworks by

selecting the best choices for each step and offering new designs for the lacking modules by providing a comparative analysis of the most successful conventional and DL-based algorithms proposed

for each step. We also review existing open-source tools and public datasets that can help train DL

models. To be more specific, we review exemplary traffic problems and mentioned requires steps for

each problem. Besides, we investigate connections to the closely related research areas of drivers’

cognition evaluation, Crowd-sourcing-based monitoring systems, Edge Computing in roadside infrastructures, Automated Driving Systems (ADS)-equipped vehicles, and highlight the missing gaps.

Finally, we review commercial implementations of traffic monitoring systems, their future outlook,

and open problems and remaining challenges for widespread use of such systems

unfold

You Might Like

Uploader
MartinFowler
 

Recommended ContentMore

Popular Components

Just Take a LookMore

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

About Us Customer Service Contact Information Datasheet Sitemap LatestNews


Room 1530, 15th Floor, Building B, No.18 Zhongguancun Street, Haidian District, Beijing, Postal Code: 100190 China Telephone: 008610 8235 0740

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号
×