MC33078, MC33079,
NCV33078, NCV33079
Low Noise Dual/Quad
Operational Amplifiers
The MC33078/9 series is a family of high quality monolithic
amplifiers employing Bipolar technology with innovative high
performance concepts for quality audio and data signal processing
applications. This family incorporates the use of high frequency PNP
input transistors to produce amplifiers exhibiting low input voltage
noise with high gain bandwidth product and slew rate. The all NPN
output stage exhibits no deadband crossover distortion, large output
voltage swing, excellent phase and gain margins, low open loop high
frequency output impedance and symmetrical source and sink AC
frequency performance.
The MC33078/9 family offers both dual and quad amplifier
versions and is available in the plastic DIP and SOIC packages (P and
D suffixes).
Dual Supply Operation:
$5.0
V to
$18
V
http://onsemi.com
MARKING
DIAGRAMS
DUAL
PDIP−8
P SUFFIX
CASE 626
1
1
8
8
1
QUAD
14
14
1
PDIP−14
P SUFFIX
CASE 646
1
MC33079P
AWLYYWWG
SOIC−8
D SUFFIX
CASE 751
1
33078
ALYW
G
8
MC33078P
AWL
YYWWG
8
Features
•
•
•
•
•
•
•
•
•
•
•
•
Low Voltage Noise: 4.5 nV/
Hz
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0
mV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/ms
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/
−14.6
V
ESD Diodes Provided on the Inputs
NCV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements
•
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS
Compliant
D1
R2
Q4
Q3
Neg
J1 Amplifier
Biasing
Q6
Q2
Z1
Q1
D2
R4
Q7
R6
R5
V
EE
Q10
Q12
Q5
Pos
D3
C2
Q8
Q9
R7
Q11
Q3
D4
C3 R9
V
out
V
CC
14
14
1
SOIC−14
D SUFFIX
CASE 751A
1
MC33079DG
AWLYWW
A
WL, L
YY, Y
WW, W
G or
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 10 of this data sheet.
R1
C1
R3
Figure 1. Representative Schematic Diagram
(Each Amplifier)
©
Semiconductor Components Industries, LLC, 2011
November, 2011
−
Rev. 9
1
Publication Order Number:
MC33078/D
MC33078, MC33079, NCV33078, NCV33079
PIN CONNECTIONS
DUAL
CASE 626/751
Output 1
1
2
Inputs 1
3
4
-
1
+
-
2
+
(Dual, Top View)
8 V
CC
7 Output 2
6
Inputs 2
5
QUAD
CASE 646/751A
1
2
14
4
Output 1
Inputs 1
V
CC
Inputs 2
Output 2
Output 4
Inputs 4
V
EE
Inputs 3
Output 3
*
1
3
)
4
5
*
13
)
12
11
V
EE
)
2
6
*
7
3
)
10
*
9
8
(Quad, Top View)
MAXIMUM RATINGS
Rating
Supply Voltage (V
CC
to V
EE)
Input Differential Voltage Range
Input Voltage Range
Output Short Circuit Duration (Note 2)
Maximum Junction Temperature
Storage Temperature
ESD Protection at any Pin
MC33078/NCV33078
MC33079/NCV33079
Maximum Power Dissipation
Operating Temperature Range
−
Human Body Model
−
Machine Model
−
Human Body Model
−
Machine Model
Symbol
V
S
V
IDR
V
IR
t
SC
T
J
T
stg
V
esd
Value
+36
Note 1
Note 1
Indefinite
+150
−60
to +150
600
200
550
150
Note 2
−40
to +85
Unit
V
V
V
sec
°C
°C
V
P
D
T
A
mW
°C
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
1. Either or both input voltages must not exceed the magnitude of V
CC
or V
EE
.
2. Power dissipation must be considered to ensure maximum junction temperature (T
J
) is not exceeded (see Figure 2).
http://onsemi.com
2
MC33078, MC33079, NCV33078, NCV33079
DC ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
=
−15
V, T
A
= 25°C, unless otherwise noted.)
Characteristics
Input Offset Voltage (R
S
= 10
W,
V
CM
= 0 V, V
O
= 0 V)
(MC33078) T
A
= +25°C
T
A
=
−40°
to +85°C
(MC33079) T
A
= +25°C
T
A
=
−40°
to +85°C
Average Temperature Coefficient of Input Offset Voltage
R
S
= 10
W,
V
CM
= 0 V, V
O
= 0 V, T
A
= T
low
to T
high
Input Bias Current (V
CM
= 0 V, V
O
= 0 V)
T
A
= +25°C
T
A
=
−40°
to +85°C
Input Offset Current (V
CM
= 0 V, V
O
= 0 V)
T
A
= +25°C
T
A
=
−40°
to +85°C
Common Mode Input Voltage Range (DV
IO
= 5.0 mV, V
O
= 0 V)
Large Signal Voltage Gain (V
O
=
$10
V, R
L
= 2.0 kW)
T
A
= +25°C
T
A
=
−40°
to +85°C
Output Voltage Swing (V
ID
=
$1.0V)
R
L
= 600
W
R
L
= 600
W
R
L
= 2.0 kW
R
L
= 2.0 kW
R
L
= 10 kW
R
L
= 10 kW
Common Mode Rejection (V
in
=
±13V)
Power Supply Rejection (Note 3)
V
CC
/V
EE
= +15 V/
−15
V to +5.0 V/
−5.0
V
Output Short Circuit Current (V
ID
= 1.0 V, Output to Ground)
Source
Sink
Power Supply Current (V
O
= 0 V, All Amplifiers)
(MC33078) T
A
= +25°C
(MC33078)
T
A
=
−40°
to +85°C
(MC33079) T
A
= +25°C
(MC33079)
T
A
=
−40°
to +85°C
3. Measured with V
CC
and V
EE
differentially varied simultaneously.
Symbol
|V
IO
|
Min
−
−
−
−
−
Typ
0.15
−
0.15
−
2.0
Max
2.0
3.0
2.5
3.5
−
mV/°C
nA
−
−
−
−
±13
90
85
−
−
+13.2
−
+13.5
−
80
80
300
−
25
−
±14
110
−
+10.7
−11.9
+13.8
−13.7
+14.1
−14.6
100
105
750
800
nA
150
175
−
−
−
V
V
O
+
V
O
−
V
O
+
V
O
−
V
O
+
V
O
−
CMR
PSR
I
SC
−
−
−
−13.2
−
−14
−
−
dB
dB
mA
+15
−20
−
−
−
−
+29
−37
4.1
−
8.4
−
−
−
mA
5.0
5.5
10
11
V
dB
Unit
mV
DV
IO
/DT
I
IB
I
IO
V
ICR
A
VOL
I
D
http://onsemi.com
3
MC33078, MC33079, NCV33078, NCV33079
AC ELECTRICAL CHARACTERISTICS
(V
CC
= +15 V, V
EE
=
−15
V, T
A
= 25°C, unless otherwise noted.)
Characteristics
Slew Rate (V
in
=
−10
V to +10 V, R
L
= 2.0 kW, C
L
= 100 pF A
V
= +1.0)
Gain Bandwidth Product (f = 100 kHz)
Unity Gain Bandwidth (Open Loop)
Gain Margin (R
L
= 2.0 kW)
C
L
= 0 pF
C
L
= 100 pF
Phase Margin (R
L
= 2.0 kW)
C
L
= 0 pF
C
L
= 100 pF
Channel Separation (f = 20 Hz to 20 kHz)
Power Bandwidth (V
O
= 27 V
pp
, R
L
= 2.0 kW, THD
$
1.0%)
Total Harmonic Distortion
(R
L
= 2.0 kW, f = 20 Hz to 20 kHz, V
O
= 3.0 V
rms
, A
V
= +1.0)
Open Loop Output Impedance (V
O
= 0 V, f = 9.0 MHz)
Differential Input Resistance (V
CM = 0 V)
Differential Input Capacitance (V
CM = 0 V)
Equivalent Input Noise Voltage (R
S
= 100
W,
f = 1.0 kHz)
Equivalent Input Noise Current (f = 1.0 kHz)
P D , MAXIMUM POWER DISSIPATION (mW)
Symbol
SR
GBW
BW
A
m
Min
5.0
10
−
−
−
−
−
−
−
−
−
−
−
−
−
Typ
7.0
16
9.0
−11
−6.0
55
40
−120
120
0.002
37
175
12
4.5
0.5
Max
−
−
−
−
−
Deg
−
−
−
−
−
−
−
−
−
−
dB
kHz
%
W
kW
pF
nV/
√
Hz
Hz
√
pA/
Unit
V/ms
MHz
MHz
dB
f
m
CS
BW
p
THD
|Z
O
|
R
in
C
in
e
n
i
n
2400
I IB , INPUT BIAS CURRENT (nA)
MC33078P & MC33079P
800
V
CM
= 0 V
T
A
= 25°C
600
2000
1600
MC33079D
1200
800
400
0
-55 -40 -20
MC33078D
400
200
0
20 40 60 80 100 120 140 160
T
A
, AMBIENT TEMPERATURE (°C)
0
0
5.0
10
15
V
CC
, | V
EE
|, SUPPLY VOLTAGE (V)
20
Figure 2. Maximum Power Dissipation
versus Temperature
1000
V IO, INPUT OFFSET VOLTAGE (mV)
I IB , INPUT BIAS CURRENT (nA)
800
600
400
V
CC
= +15 V
V
EE
= -15 V
V
CM
= 0 V
2.0
Figure 3. Input Bias Current versus
Supply Voltage
V
CC
= +15 V
V
EE
= -15 V
R
S
= 10
W
1.0 V
CM
= 0 V
A
V
= +1
0
Unit 3
Unit 1
Unit 2
200
0
-55
-1.0
-25
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
-2.0
-55
-25
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 4. Input Bias Current versus Temperature
Figure 5. Input Offset Voltage versus Temperature
http://onsemi.com
4
MC33078, MC33079, NCV33078, NCV33079
V
CC
= +15 V
V
EE
= -15 V
T
A
= 25°C
V ICR , INPUT COMMON MODE VOLTAGE RANGE (V)
600
I IB, INPUT BIAS CURRENT (nA)
500
400
300
200
100
0
-15
V
CC
-0
V
CC
-0.5
V
CC
-1.0
V
CC
-1.5
Voltage
Range
V
EE
+1.5
V
EE
+1.0
V
EE
+0.5
V
EE
+0
- 55
-V
CM
+V
CM
V
CC
= +3.0 V to +15 V
V
EE
= -3.0 V to -15 V
DV
IO
= 5.0 mV
V
O
= 0 V
-10
- 5.0
0
5.0
10
15
- 25
0
25
50
75
100
125
V
CM
, COMMON MODE VOLTAGE (V)
T
A
, AMBIENT TEMPERATURE (°C)
Figure 6. Input Bias Current versus
Common Mode Voltage
Figure 7. Input Common Mode Voltage
Range versus Temperature
| I SC |, OUTPUT SHORT CIRCUIT CURRENT (mA)
50
Sink
40
Source
V
CC
= +15 V
V
EE
= -15 V
R
L
< 100
W
V
ID
= 1.0 V
Vsat , OUTPUT SATURATION VOLTAGE (V)
V
CC
-1.0
V
CC
-3.0
V
CC
-5.0
V
EE
+5.0
V
EE
+3.0
V
EE
+1.0
0
-55°C
25°C
125°C
125°C
25°C
-55°C
1.0
2.0
3.0
V
CC
= +15 V
V
EE
= -15 V
30
20
4.0
10
- 55
- 25
R
L
, LOAD RESISTANCE TO GROUND (kW)
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 8. Output Saturation Voltage versus
Load Resistance to Ground
Figure 9. Output Short Circuit Current
versus Temperature
9.0
I CC , SUPPLY CURRENT (mA)
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0
- 55
- 25
±15
V
±5.0
V
±10
V
V
CM
= 0 V
R
L
=
∞
V
O
= 0 V
CMR, COMMON MODE REJECTION (dB)
10
160
140
120
100
80
60
40
20
100
V
CC
= +15 V
V
EE
= -15 V
V
CM
= 0 V
DV
CM
=
±1.5
V
T
A
= 25°C
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
1.0 M
10 M
D
V
CM
-
A
DM
+
D
V
CM
D
V
O
×
A
DM
D
V
O
CMR = 20Log
MC33079
±15
V
±5.0
V
±4.0
V
Supply Voltages
±10
V
MC33078
0
25
50
75
T
A
, AMBIENT TEMPERATURE (°C)
100
125
Figure 10. Supply Current versus
Temperature
Figure 11. Common Mode Rejection
versus Frequency
http://onsemi.com
5