Industrial and process control, distributed power, medical, ATE, communications,
defense, and aerospace.
For details on proper operation please refer to the:
Design Guide & Applications Manual for Maxi, Mini, Micro Family.
Absolute Maximum Ratings
Product Overview
These DC-DC converter modules use advanced
power processing, control and packaging
technologies to provide the performance,
flexibility, reliability and cost effectiveness of a
mature power component.
High frequency ZCS/ZVS switching provides
high power density with low noise and
high efficiency.
Part Numbering
e.g. V24B12T200BL2
24B
Product Grade Temperatures (°C)
Grade
Operating
Storage
E
= - 10 to +100 - 20 to +125
C
= - 20 to +100 - 40 to +125
T
= - 40 to +100 - 40 to +125
H
= - 40 to +100 - 55 to +125
M
= - 55 to +100 - 65 to +125
B
Output Power
P
OUT
100W, 150W
150W, 200W
200W
200W
150W, 200W, 250W
150W, 200W
150W, 200W, 250W
150W, 200W, 250W
150W, 200W
150W, 200W, 250W
Pin Style
Finish
Blank:
Short
Tin/Lead
L:
Long
Tin/Lead
S:
Short ModuMate
Gold
N:
Long ModuMate
Gold
F:
Short RoHS
Gold
G:
Long RoHS
Gold
K:
Extra Long RoHS
Gold
Baseplate
Blank:
Slotted
2:
Threaded
3:
Through-hole
Product Type
V
= Standard
S
= Enhanced
efficiency
(avail.
≤12
V
OUT
only)
Output Voltage
3V3
= 3.3V
5
= 5V
6.5
= 6.5V
8
=
8V
12
=
12V
15
=
15V
24
=
24V
28
=
28V
36
=
36V
48
=
48V
V
OUT
3.3V
5V
6.5V
8V
12V
15V
24V
28V
36 V
48 V
24V Mini Family
Page 1 of 15
Rev 5.1
06/2017
vicorpower.com
800 927.9474
24V Input
Module Family Electrical Characteristics
Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and baseplate temperature, unless otherwise specified.
All temperatures refer to the operating temperature at the center of the baseplate.
MODULE INPUT SPECIFICATIONS
Parameter
Operating input voltage
Input surge withstand
Undervoltage turn-on
Undervoltage turn-off
Overvoltage turn-off/on
Disabled input current
14.8
36.3
17.5
15.3
37.8
39.6
4.0
Min
18
Typ
24
Max
36
50
17.9
Unit
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
PC pin low
<100ms
Notes
MODULE OUTPUT SPECIFICATIONS
Parameter
Output voltage setpoint
Line regulation
Temperature regulation
Power sharing accuracy
Programming range
10
±0.02
±0.002
±2
Min
Typ
Max
±1
±0.20
±0.005
±5
110
Unit
%
%
%/°C
%
%
Notes
Of nominal output voltage. Nominal input; full load; 25°C
Low line to high line; full load
Over operating temperature range
10 to 100% of full load
Of nominal output voltage. For trimming below 90%
of nominal, a minimum load of 10% of maximum
rated power may be required.
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
Externally applied
+OUT to –OUT, +Sense to –OUT — Absolute Maximum Ratings
3.3V
5V
6.5V
8V
12V
15V
24V
28V
36V
48V
-0.5 to 4.7
-0.5 to 7.0
-0.5 to 9.1
-0.5 to 10.9
-0.5 to 16.1
-0.5 to 20.0
-0.5 to 31.7
-0.5 to 36.9
-0.5 to 47.1
-0.5 to 62.9
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
V
DC
Note:
The permissible load current must never be exceeded during normal, abnormal or test conditions. For additional output related application
information, please refer to output connections on page 10.
THERMAL RESISTANCE AND CAPACITY
Parameter
Baseplate to sink; flat, greased surface
Baseplate to sink; thermal pad (P/N 20264)
Baseplate to ambient
Baseplate to ambient; 1000LFM
Thermal capacity
Min
Typ
0.16
0.14
8.0
1.9
83
Max
Unit
°C/Watt
°C/Watt
°C/Watt
°C/Watt
Watt-sec/°C
24V Mini Family
Page 2 of 15
Rev 5.1
06/2017
vicorpower.com
800 927.9474
24V Input
Module Family Electrical Characteristics (Cont.)
MODULE CONTROL SPECIFICATIONS
Parameter
Min
Typ
Max
Unit
Notes
Primary Side (PC = Primary Control; PR = Parallel)
PC bias voltage
current limit
PC module disable
PC module enable delay
PC module alarm
PC resistance
PR emitter amplitude
PR emitter current
PR receiver impedance
PR receiver threshold
PR drive capability
Secondary Side (SC = Secondary Control)
SC bandgap voltage
SC resistance
SC capacitance
SC module alarm
1.21
990
1.23
1000
0.033
0
1.25
1010
V
DC
Ω
µF
V
DC
With open trim; referenced to –Sense. See Fig. 7
Referenced to –Sense
0.9
5.7
150
375
2.4
500
2.5
625
2.6
12
1.0
5.9
5.50
1.5
2.3
5.75
2.1
2.6
4
6.00
3.0
2.9
7
0.5
1.1
6.1
V
DC
mA
V
DC
ms
Vavg
MΩ
Volts
mA
Ω
Volts
modules
25°C
Minimum pulse width: 20ns
Without PR buffer amplifier
UV, OV, OT, module fault. See Figs. 3 and 5
See Fig. 3, converter off or fault mode
PR load >30Ω, <30pF
PC current = 1.0mA
PC voltage = 5.5V
During normal operation
Switch must be able to sink
≥4mA.
See Fig. 2
MODULE GENERAL SPECIFICATIONS
Parameter
Remote sense (total drop)
Isolation test voltage (IN to OUT)*
Isolation test voltage (IN to base)*
Isolation test voltage (OUT to base)*
Isolation resistance
Weight (E, C, T grade)
Weight (H, M grade)
3.1
(89.3)
3.5
(99.6)
100
3000
1500
500
10
3.5
(100.3)
3.9
(110.6)
115
cURus, cTÜVus, CE
3.9
(111.3)
4.3
(121.6)
Min
Typ
Max
0.5
Unit
V
DC
V
RMS
V
RMS
V
RMS
MΩ
ounces
(grams)
ounces
(grams)
°C
See Figs. 3 and 5. Do not operate coverter >100°C.
UL60950-1, EN60950-1, CSA60950-1, IEC60950-1.
With appropriate fuse in series with the +Input
Notes
0.25V per leg (sense leads must be connected to
respective, output terminals)
Complies with reinforced insulation requirements
Complies with basic insulation requirements
Complies with operational insulation requirements
IN to OUT, IN to baseplate, OUT to baseplate
Temperature limiting
Agency approvals
* Isolation test voltage, 1 minute or less.
Note:
Specifications are subject to change without notice.
24V Mini Family
Page 3 of 15
Rev 5.1
06/2017
vicorpower.com
800 927.9474
24V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS
3.3
V
OUT
, 150W (e.g. S24B3V3C150BL, V24B3V3C150BL)
Parameter
Efficiency
S24B3V3C150BL (enhanced efficiency)
V24B3V3C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.0
80.0
4.14
Typ
86.5
81.4
160
4.3
5
±0.02
52.3
52.3
Max
Unit
%
200
4.46
6
±0.2
45.45
61.5
61.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
46.4
31.8
3.3
V
OUT
, 100W (e.g. S24B3V3C100BL, V24B3V3C100BL)
Parameter
Efficiency
S24B3V3C100BL (enhanced efficiency)
V24B3V3C100BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
83.5
80.4
4.14
Typ
85.1
81.4
71
4.3
2.5
±0.02
34.8
34.8
Max
Unit
%
89
4.46
3
±0.2
30.3
41
41
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.9
21.2
5
V
OUT
, 200W (e.g. S24B5C200BL, V24B5C200BL)
Parameter
Efficiency
S24B5C200BL (enhanced efficiency)
V24B5C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
85.9
80.5
6.07
Typ
87.0
84.9
95
6.3
5.1
±0.02
52
52
Max
Unit
%
119
6.53
5.5
±0.45
40
54.5
62
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
40.8
28
5
V
OUT
, 150W (e.g. S24B5C150BL, V24B5C150BL)
Parameter
Efficiency
S24B5C150BL (enhanced efficiency)
V24B5C150BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
86.0
83.5
6.03
Typ
87.2
84.8
50
6.25
3.7
±0.02
34.5
34.5
Max
Unit
Notes
%
63
6.47
4.5
±0.2
30
40.5
40.5
mV
Volts
Watts
%
Amps
Amps
Amps
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
30.6
5
24V Mini Family
Page 4 of 15
Rev 5.1
06/2017
vicorpower.com
800 927.9474
24V Input
MODULE SPECIFIC OPERATING SPECIFICATIONS (CONT.)
6.5
V
OUT
, 200W (e.g. S24B6V5C200BL, V24B6V5C200BL)
Parameter
Efficiency
S24B6V5C200BL (enhanced efficiency)
V24B6V5C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
84.5
83.2
7.7
Typ
87.5
84.6
182
8.0
5.3
±0.02
35.4
35.4
Max
Unit
%
230
8.3
6.2
±0.2
30.8
41.5
41.5
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
31.4
21.5
8
V
OUT
, 200W (e.g. S24B8C200BL, V24B8C200BL)
Parameter
Efficiency
S24B8C200BL (enhanced efficiency)
V24B8C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
87.0
85.0
9.36
Typ
89.0
86.4
200
9.7
5
±0.02
28.8
28.8
Max
Unit
%
250
10.1
6
±0.2
25
33.8
33.8
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
25.5
17.5
12
V
OUT
, 250W (e.g. S24B12C250BL, V24B12C250BL)
Parameter
Efficiency
S24B12C250BL (enhanced efficiency)
V24B12C250BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
87.0
86.0
13.8
Typ
89.0
87.4
172
14.3
6.5
±0.02
24.0
24.0
Max
Unit
%
215
14.8
7.6
±0.2
20.8
28.1
28.1
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
No load
No load to full load; nominal input
Output voltage 95% of nominal
Output voltage <250mV
0
21.3
14.6
12
V
OUT
, 200W (e.g. S24B12C200BL, V24B12C200BL)
Parameter
Efficiency
S24B12C200BL (enhanced efficiency)
V24B12C200BL (standard efficiency)
Ripple and noise
Output OVP setpoint
Dissipation, standby
Load regulation
Load current
Current limit
Short circuit current
Min
87.0
87.0
13.8
Typ
90.0
88.0
360
14.4
4.6
±0.02
19.2
19.2
Max
Unit
%
450
15
7.4
±0.2
16.67
22.6
22.6
mV
Volts
Watts
%
Amps
Amps
Amps
Notes
Nominal input; full load; 25°C
p-p; Nominal input; full load; 20MHz bandwidth
25°C; recycle input voltage or PC to restart (>100ms off)
When I just graduated, I worked as an electromechanical engineer on the spraying line of an automobile company. Factory equipment is becoming more and more intelligent. The engineer who led me can adj...
ADIShijian New Infrastructure Series Episode 3 - 5G Instrumentation and Testing Questions to Win Gifts! Let's Start~Click here to enter the event5G Instrumentation and Test
Analog Devices understands ...
# How does MATLAB output fixed-length hexadecimal data (automatically fill in zeros at high places) and store it in a file? **Table of Contents** [TOCM] ## 1. MATLAB outputs fixed-length hexadecimal d...
Although the PB-02-Kit Bluetooth development board is designed for Bluetooth applications, it does not prevent us from configuring more peripherals for it to enrich its functions, such as equipping it...
Today I saw an explanation of Boost topology on the Internet. As shown in the figure below, when K is turned on, why is the C terminal charged to form a stable voltage?
Why isn't the turned-on K short...
Introduction SoC (system on chip) is a new milestone in the development of microelectronics technology. SoC is no longer a unit circuit with a single function, but integrates a complete sys...[Details]
As a basic test instrument, the oscilloscope was once a pet in university laboratories. At that time, 20 to 30 students in a laboratory gathered around an oscilloscope to listen to the teacher's ex...[Details]
1 Working Principle
This system makes full use of the control and computing capabilities of the 89C51 single-chip microcomputer and adopts the MCS-51 assembly language to design a microwave pu...[Details]
The development of the semiconductor industry has driven the experience upgrade of application terminals. In addition to the technical upgrade of related components, panels are also an indispensabl...[Details]
This design uses NEC upd78F0547 microcontroller as the main controller. The output current of the DC power supply is set through the keyboard, and the output voltage and current values can be dis...[Details]
Many ISPs (Internet Service Providers) now use UPS to continuously supply power to their servers to ensure that the information on their servers can be accessed by the outside world at any time. Th...[Details]
The imaging spectrometer was developed on the basis of multispectral remote sensing imaging technology starting in the 1980s. It acquires hyperspectral images of scenery or targets with high spectral...[Details]
Apple usually holds a fall press conference around September 10 to announce the most important products of the year. This tradition has continued for 8 years. Apple sometimes holds other eve...[Details]
Designers of car computers understand that drivers may only look at the dashboard display for a few seconds. Since the operator of a car computer may also be driving the car, car computers have bro...[Details]
Strategy Analytics' latest research report "IoT Cellular Connections by Air Interface and Vertical Industry" points out that by 2025, 5G connections will grow to one-third of all IoT connections; the...[Details]
MAX7232BF has 4-bit serial input, 2 decimal points and 4-bit address; the output is 10-bit data plus 20 independent decimal points, the data output code is BCD code, and the 2 decimal points ...[Details]
The effectiveness of the differentiated competitive strategy of international management is evident, and Changdian Technology's profits and advanced process output increased significantly in 2020 战...[Details]
Introduction: The design based on the ATT7022 chip aims to make the design scheme reasonable and become a cost-effective product, especially in terms of measurement range. The current measureme...[Details]
H8322 high efficiency car charger chip with cable 36V to 5V 3.1A 36V down to 5V 2.5A 30V to 5V 36V to 12V 24V down to 12V 2.5A efficiency is more than 90%, the most advantageous and comprehensive c...[Details]
0 Preface
At present, leakage protectors are widely used as a new type of low-voltage protection electrical appliance, both in cities and in rural areas. The reliability of their work directly affe...[Details]