Further extensions of the CWR15 product are planned for later in 2009. A new case size will be added, and the voltage range will be
extended to 20 volts. Ratings of 100 µF at 4 volts to 10 µF at 20 volts will be included in this extension of the product line.
SEPTEMBER 2013
n
53
TBC Series
CWR15 MIL-PRF-55365/12
HOW TO ORDER
COTS-PLUS & MIL QPL (CWR15):
TBC L
Type
Case
Size
Established Reliability, COTS-Plus & Space Level
685
*
004
C
#
Packaging Inspection Level
S = Std.
B = Bulk
Conformance
R = 7" T&R
L = Group A
S = 13" T&R
W = Waffle
M = MIL (JAN)
CWR15
See page 6
for additional
packaging
options.
@
0
^
++
Surge Test
Option
00 = None
23 = 10 Cycles, +25ºC
24 = 10 Cycles,
-55ºC & +85ºC
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Capacitance Capacitance
Voltage
Standard or
Code
Tolerance
Code
Low ESR
pF code:
M = ±20% 004 = 4Vdc
Range
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR
represent
J = ±5%
010 = 10Vdc
significant
020 = 20Vdc
figures 3rd
digit represents
multiplier
(number of
zeros to follow)
Reliability Grade
Qualification Termination Finish
Level
Weibull:
0 = Fused Solder
0 = N/A
B = 0.1%/1000 hrs.
Plated
90% conf.
9 = SRC9000 9 = Gold Plated
C = 0.01%/1000 hrs.
7 = Matte Sn
90% conf.
(COTS-Plus only)
D = 0.001%/1000 hrs.
90% conf.
Z = Non-ER
Not RoHS Compliant
LEAD-FREE COMPATI-
BLE
COMPONENT
For RoHS compliant products,
please select correct termination style.
CWR15 P/N CROSS REFERENCE:
CWR15
Style
F
Voltage
Code
C = 4Vdc
D = 6Vdc
F = 10Vdc
J = 20Vdc
C
Termination
Finish
B = Gold Plated
K = Solder Fused
685
Capacitance
Code
pF code:
1st two digits
represent
significant
figures 3rd digit
represents
number of zeros
to follow
*
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
See page 6 for
additional
packaging
options.
–
Product Level
Designator
Weibull
B = 0.1
C = 0.01
D = 0.001
L
Case Size
+
Surge Test
Option
A = +25°C after Weibull
B = -55°C & +85°C
after Weibull
C = -55°C & +85°C
before Weibull
Not RoHS Compliant
SPACE LEVEL OPTIONS TO SRC9000*:
TBC L
Type
Case
Size
685
*
004
C
L
@
9
^
++
Surge Test
Option
45 = 10 cycles,
-55ºC & +85ºC
before Weibull
Not RoHS Compliant
Capacitance Capacitance
Voltage
Standard or Packaging Inspection Level
Code
Tolerance
Code
Low ESR
L = Group A
B = Bulk
pF code:
M = ±20% 004 = 4Vdc
Range
R = 7" T&R
1st two digits
K = ±10% 006 = 6Vdc C = Std ESR S = 13" T&R
represent
J = ±5%
010 = 10Vdc L = Low ESR W = Waffle
significant
020 = 20Vdc
figures 3rd
See page 6
digit represents
for additional
multiplier
(number of
packaging
zeros to follow)
options.
Reliability Grade
Qualification Termination Finish
Level
Weibull:
0 = Fused Solder
9 = SRC9000
B = 0.1%/1000 hrs.
Plated
90% conf.
9 = Gold Plated
C = 0.01%/1000 hrs.
90% conf.
D = 0.001%/1000 hrs.
90% conf.
*Contact factory for AVX SRC9000 Space Level SCD details.
TECHNICAL SPECIFICATIONS
Technical Data:
Capacitance Range:
Capacitance Tolerance:
Rated Voltage: (V
R
)
Category Voltage: (V
C
)
Surge Voltage: (V
s
)
Temperature Range:
Unless otherwise specified, all technical data relate to an ambient temperature of 25°C
0.47 μF to 68 μF
±5%; ±10%; ±20%
4
6
10
20
2.7
4
6.7
13.3
5.3
8
13.3
26.7
3.5
5.3
8.7
17.8
-55°C to +125°C
85°C:
125°C:
85°C:
125°C:
54
n
SEPTEMBER 2013
TBC Series
CWR15 MIL-PRF-55365/12
Established Reliability, COTS-Plus & Space Level
RATING & PART NUMBER REFERENCE
CWR15 P/N
CWR15CK685*^L+
CWR15CK106*^R+
CWR15CK156*^R+
CWR15CK226*^R+
CWR15CK336*^R+
CWR15CK686*^A+
CWR15DK335*^L+
CWR15DK475*^L+
CWR15DK685*^R+
CWR15DK106*^R+
CWR15DK156*^R+
CWR15DK226*^A+
CWR15DK336*^A+
CWR15DK476*^A+
CWR15FK474*^L+
CWR15FK684*^L+
CWR15FK105*^L+
CWR15FK155*^L+
CWR15FK225*^L+
CWR15FK335*^R+
CWR15FK475*^R+
CWR15FK685*^R+
CWR15FK106*^R+
CWR15FK156*^R+
CWR15JK474*^R+
AVX MIL & COTS-Plus P/N
TBC L 685 * 004 C
TBC R 106 * 004 C
TBC R 156 * 004 C
TBC R 226 * 004 C
TBC R 336 * 004 C
TBC A 686 * 004 C
TBC L 335 * 006 C
TBC L 475 * 006 C
TBC R 685 * 006 C
TBC R 106 * 006 C
TBC R 156 * 006 C
TBC A 226 * 006 C
TBC A 336 * 006 C
TBC A 476 * 006 C
TBC L 474 * 010 C
TBC L 684 * 010 C
TBC L 105 * 010 C
TBC L 155 * 010 C
TBC L 225 * 010 C
TBC R 335 * 010 C
TBC R 475 * 010 C
TBC R 685 * 010 C
TBC R 106 * 010 C
TBC A 156 * 010 C
TBC L 474 * 020 C
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
# @ 0 ^ ++
# @ 0 ^ ++
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
#@0^+
Parametric Specifications by Rating per MIL-PRF-55365/12
Cap
DC Rated
ESR
DCL max
DF Max
@ 120Hz Voltage @ 100kHz
+25ºC
+85ºC
+125ºC
+25ºC
+(85/125)ºC
μF
V
Ohms
AVX SRC9000 P/N
Case
(μA)
(μA)
(μA)
(%)
(%)
@ 25ºC
@ +85ºC @ +25ºC
TBC L 685 * 004 C L @ 9 ^ +
L
6.8
4
10
0.5
5
6
8
16
TBC R 106 * 004 C L @ 9 ^ ++ R
10
4
6
0.5
5
6
8
16
TBC R 156 * 004 C L @ 9 ^ ++ R
15
4
6
0.6
6
7
8
16
TBC R 226 * 004 C L @ 9 ^ +
R
22
4
6
0.9
9
11
8
16
TBC R 336 * 004 C L @ 9 ^ +
R
33
4
6
1.3
13
16
10
20
TBC A 686 * 004 C L @ 9 ^ +
A
68
4
1
2.7
27
33
15
30
TBC L 335 * 006 C L @ 9 ^ +
L
3.3
6
10
0.5
5
6
6
12
TBC L 475 * 006 C L @ 9 ^ +
L
4.7
6
10
0.5
5
6
8
16
TBC R 477 * 685 C L @ 9 ^ ++ R
6.8
6
6
0.5
5
6
8
16
TBC R 478 * 106 C L @ 9 ^ ++ R
10
6
6
0.6
6
7
8
16
TBC R 156 * 006 C L @ 9 ^ +
R
15
6
6
0.9
9
11
8
16
TBC A 226 * 006 C L @ 9 ^ +
A
22
6
6
1.4
14
17
10
20
TBC A 336 * 006 C L @ 9 ^ +
A
33
6
6
2
20
24
10
20
TBC A 476 * 006 C L @ 9 ^ +
A
47
6
4
2.8
28
34
15
30
TBC L 474 * 010 C L @ 9 ^ +
L
0.47
10
12
0.5
5
6
6
12
TBC L 684 * 010 C L @ 9 ^ +
L
0.68
10
10
0.5
5
6
6
12
TBC L 105 * 010 C L @ 9 ^ +
L
1
10
10
0.5
5
6
6
12
TBC L 155 * 010 C L @ 9 ^ +
L
1.5
10
10
0.5
5
6
6
12
TBC L 225 * 010 C L @ 9 ^ +
L
2.2
10
10
0.5
5
6
6
12
TBC R 335 * 010 C L @ 9 ^ +
R
3.3
10
6
0.5
5
6
8
16
TBC R 475 * 010 C L @ 9 ^ +
R
4.7
10
6
0.5
5
6
8
16
TBC R 685 * 010 C L @ 9 ^ +
R
6.8
10
6
0.7
7
8.5
8
16
TBC R 106 * 010 C L @ 9 ^ +
R
10
10
6
1
10
12
8
16
TBC A 156 * 010 C L @ 9 ^ +
A
15
10
6
1.5
15
18
10
20
TBC L 474 * 020 C L @ 9 ^ +
L
0.47
20
24
0.5
5
6
6
12
-55ºC
(%)
12
12
12
12
15
23
9
12
12
12
12
15
15
23
9
9
9
9
9
12
12
12
12
15
9
25ºC
Dissipation
Ripple
A
W
(100kHz)
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.20
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.040
0.08
0.040
0.10
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.025
0.05
0.045
0.09
0.045
0.09
0.045
0.09
0.045
0.09
0.040
0.08
0.025
0.03
Power
Typical Ripple Data by Rating
85ºC
125ºC
25ºC
Ripple
Ripple
Ripple
A
A
V
(100kHz) (100kHz) (100kHz)
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.18
0.08
0.20
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.07
0.03
0.49
0.09
0.04
0.40
0.04
0.02
0.55
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.05
0.02
0.50
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.08
0.03
0.52
0.07
0.03
0.49
0.03
0.01
0.77
85ºC
Ripple
V
(100kHz)
0.45
0.47
0.47
0.47
0.47
0.18
0.45
0.45
0.47
0.47
0.47
0.44
0.44
0.36
0.49
0.45
0.45
0.45
0.45
0.47
0.47
0.47
0.47
0.44
0.70
125ºC
Ripple
V
(100kHz)
0.20
0.21
0.21
0.21
0.21
0.08
0.20
0.20
0.21
0.21
0.21
0.20
0.20
0.16
0.22
0.20
0.20
0.20
0.20
0.21
0.21
0.21
0.21
0.20
0.31
All technical data relates to an ambient temperature of +25°C. Capacitance and DF are measured at 120Hz, 0.5V RMS with a maximum DC bias of 2.2 volts. DCL is measured at rated voltage after 5 minutes.
NOTE: AVX reserves the right to supply a higher voltage rating or tighter tolerance part in the same case size, to the same reliability standards.
I have been engaged in PLC programming for a year, and I feel that I have to design a separate program for each device I encounter. Do you have a universal program template that can be applied?...
The lower the noise floor of an oscilloscope, the better. However, the noise floor measurement is affected by various factors. When comparing oscilloscopes, it is meaningless to look at only one param...
[i=s]This post was last edited by lemon1394 on 2021-8-23 23:37[/i]There are many problems with fonts. Many netizens' methods have their own advantages and disadvantages, which are summarized as follow...
[i=s]This post was last edited by Jacktang on 2019-6-3 23:28[/i]SDK version: simplelink_cc13x0_sdk_1_60_00_21IAR version: IAR8.11.1Code:C:\ti\simplelink_cc13x0_sdk_1_60_00_21\examplestos\CC1310_LAUNCH...
[i=s]This post was last edited by lb8820265 on 2022-4-16 00:54[/i]Ubuntu is installed for the purpose of installing ROS. The official website of ROS introduces how to install it. The latest version of...
With the advent of the 5G era, the continuous innovation of smart car technology, the increasing maturity of autonomous driving technology, and new business models such as car sharing have brought br...[Details]
When porting the mini2440 driver to 2.6.31, the compiler prompts that similar definitions such as S3C2410_GPB5 and S3C2410_GPB5_OUTPUT are missing. So I searched for the header files in the relevan...[Details]
Sina Digital News reported on the morning of November 23rd that the N97 is a 3G smartphone using the Symbian 9.4 S60 operating system launched by Nokia in late 2008. At that time, the iPhone had...[Details]
OFweek Cup · OFweek 2023 China
Robot
Industry Annual Selection (abbreviated as OFweek Robot Awards 2023) is jointly organized by OFweek, China's high-tech industry portal, and its authorita...[Details]
July 3 news Today, iQOO officially announced that the new iQOO Z1x will be equipped with a 5000mAh large-capacity battery and support 33W flash charging. iQOO has released a number of new...[Details]
Data acquisition occupies an irreplaceable position in the information processing system. It is formed based on technologies such as sensors, signal measurement and processing, and microcomputers. It...[Details]
As the use of solar energy becomes more and more widespread, the requirements for the use of reserve power in photovoltaic off-grid systems are becoming higher and higher. At present, the use of c...[Details]
According to foreign media reports, an international team of scientists from the Moscow State University of Science and Technology (NUST MISIS), the Russian Academy of Science and the Helmholtz-Zentr...[Details]
0Introduction
Satellite applications have provided all-weather, all-day, high-precision positioning and monitoring services for various military and civilian carriers on land, sea ...[Details]
1 Introduction
Wireless sensor networks are widely used in military reconnaissance, environmental monitoring, target positioning and other fields. Generally speaking, the design requirements o...[Details]
1. Overall analysis of address conversion
Level one fetch and level two fetch are divided into primary conversion and secondary conversion.
As can be seen from the right s...[Details]
As a system design software, LabVIEW can provide all the engineering elements needed to build the most advanced and technically challenging systems.
As engineering applications become more cha...[Details]
(1) Interrupt functions cannot pass parameters. If an interrupt function contains any parameter declaration, a compilation error will occur.
(2) The interrupt function has no return value. If you a...[Details]
Preface
In the CAN protocol, the identifier of the message does not represent the address of the node, but is related to the content of the message. Therefore, the sender sends the message to all rec...[Details]
As the name implies, non-contact temperature sensors are sensors that can measure temperature without direct contact with the object being measured. This type of sensor is widely used in industry, ...[Details]