Modes of Operation and Pin-outs ................................................................................................................................................ 6
Pin-out Top Views................................................................................................................................................................. 6
Test Circuit Diagrams for LVCMOS and Clipped Sinewave Outputs ........................................................................................... 7
Frequency Stability ............................................................................................................................................................. 11
Output frequency and format .............................................................................................................................................. 11
Output Frequency Tuning ................................................................................................................................................... 11
Pin 1 Configuration (OE, VC, or NC) .................................................................................................................................. 12
Control Voltage Bandwidth ................................................................................................................................................. 15
Pull Range, Absolute Pull Range ............................................................................................................................................... 16
I
2
C Control Registers ................................................................................................................................................................. 21
Register Address: 0x00. Digital Frequency Control Least Significant Word (LSW) ............................................................ 21
Register Address: 0x01. OE Control, Digital Frequency Control Most Significant Word (MSW) ......................................... 22
Register Address: 0x02. DIGITAL PULL RANGE CONTROL ............................................................................................ 23
Register Address: 0x05. PULL-UP DRIVE STRENGTH CONTROL .................................................................................. 24
Register Address: 0x06. PULL-DOWN DRIVE STRENGTH CONTROL ............................................................................ 25
Serial Interface Configuration Description.................................................................................................................................. 26
Serial Signal Format .................................................................................................................................................................. 26
Parallel Signal Format................................................................................................................................................................ 27
Parallel Data Format .................................................................................................................................................................. 27
I
2
C Timing Specification ............................................................................................................................................................. 29
I
2
C Device Address Modes ........................................................................................................................................................ 30
Schematic Example ................................................................................................................................................................... 31
Dimensions and Patterns ........................................................................................................................................................... 32
Ordering Information .................................................................................................................................................................. 34
Rev 0.60
Page 2 of 36
www.sitime.com
SiT5357
60 to 220 MHz,
±0.1
to
±0.25
ppm
Elite Platform™ Precision Super-TCXO
Electrical Characteristics
PRELIMINARY
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise
stated. Typical values are at 25°C and 3.3V Vdd
Table 1. Output Characteristics
Parameters
Output Frequency Range
Duty Cycle
Rise/Fall Time
Output Voltage High
Output Voltage Low
Output Voltage Level
Frequency Stability over Temperature
Frequency vs. Temperature Slope
Dynamic Frequency Change to
Temperature Ramp
Initial Tolerance
24-hour holdover stability
Hysteresis Over Temperature
Symbol
F
DC
Tr, Tf
VOH
VOL
V_out
F_stab
ΔF/ΔT
F_dynamic
F_init
F_24_Hold
F_hys
Min.
60.000001
45
–
90%
–
0.8
-0.1
–
–
-1
-0.28
–
–
–
Supply Voltage Sensitivity
Output Load Sensitivity
One-Day Aging
One-Year Aging
20-Year Aging
Frequency Stability over Temperature
Frequency vs. Temperature Slope
Dynamic Frequency Change during
Temperature Ramp
Initial Tolerance
24-hour holdover
Supply Voltage Sensitivity
Output Load Sensitivity
One-Day Aging
One-Year Aging
20-Year Total Stability
Start-up Time
First Pulse Accuracy
F_Vdd
F_load
F_1d
F_1y
F_20y
F_stab
ΔF/ΔT
F_dynamic
F_init
F_24_Hold
F_Vdd
F_load
F_1d
F_1y
F_20y
T
T_start
T_stability
–
–
–
–
–
–
-0.2
0.25
–
–
-1
-0.32
–
–
–
–
–
-4.6
–
–
±2.5
±2
±1
±3
±1
–
5
10
Typ.
–
–
1
–
–
–
–
±2.5
±0.021
–
–
±15
±15
±10
±2.5
±1
±1
±3
±0.5
±1
–
–
±8
±0.07
–
Max.
220
55
–
–
10%
1.2
+0.1
–
–
+1
+0.28
–
–
–
–
–
–
–
–
–
+0.2
+0.25
–
–
+1
+0.32
–
–
–
–
–
+4.6
–
–
Unit
MHz
%
ns
Vdd
Vdd
V
ppm
ppb/°C
ppb/s
ppm
ppm
ppb
ppb
ppb
ppb
ppb
ppb
ppb
ppm
ppm
ppm
ppm
ppb/°C
ppb/s
ppm
ppm
ppb
ppb
ppb
ppb
ppm
ppm
ms
ms
0.5C/min temperature ramp rate
Initial frequency at 25°C inclusive of solder-down
shift at 48 hours after 2 reflows
Per Stratum 3 definition
Vdd ±5%
LVCMOS output, 15 pF ±10%
Clipped sinewave output, 10kΩ, 10 pF ±10%
After 30-days of continued operation
At 25°C
Stratum 3 per GR-1244
Time to first pulse, measured from the time Vdd
reaches 90% of its final value
Time to first accurate pulse within rated stability,
measured from the time Vdd reaches 90% of its final
value
0.5C/min temperature ramp rate
Initial frequency at 25°C inclusive of solder-down shift
at 48 hours after 2 reflows
Per Stratum 3 definition
-40 to 105C
-40 to 85C
-20 to 70C
Vdd ±5%
LVCMOS output, 15 pF ±10%
Clipped sinewave output, 10kΩ, 10 pF ±10%
After 30-days of continued operation
At 25°C
At 25°C
Referenced to (fmax + fmin)/2 over the specified
temperature range
10% - 90% Vdd
I
OH
= -6 mA, (Vdd = 3.3 V, 3.0 V, 2.8 V, 2.5 V)
I
OL
= 6 mA, (Vdd = 3.3 V, 3.0 V, 2.8 V, 2.5 V)
Measured peak-to-peak swing at any Vdd
Referenced to (max frequency + minimum
frequency)/2 over the specified temperature range
Condition
Frequency Coverage
LVCMOS Output Characteristics
Clipped Sinewave Output Characteristics
Frequency Stability - Stratum 3+ Grade
Frequency Stability - Stratum 3 Grade
Start-up Characteristics
Rev 0.60
Page 3 of 36
www.sitime.com
SiT5357
60 to 220 MHz,
±0.1
to
±0.25
ppm
Elite Platform™ Precision Super-TCXO
Table 2. DC Characteristics
Parameters
Supply Voltage
Symbol
Vdd
Min.
2.25
2.52
2.7
2.97
Current Consumption
OE Disable Current
Operating Temperature Range
IDD
I_od
T_use
–
–
-20
-40
-40
Typ.
2.5
2.8
3.0
3.3
Max.
2.75
3.08
3.3
3.63
Unit
V
V
V
V
mA
mA
°C
°C
°C
PRELIMINARY
Condition
Contact
SiTime
for 2.25V to 3.63V continuous supply
voltage support
Supply Voltage
Current Consumption
–
45
44.5
–
–
–
–
Temperature Range
+70
+85
+105
F = 98.304 MHz, No Load
OE = GND, output is weakly pulled down
Extended Commercial
Industrial. Contact
SiTime
for 105
°C
support
Extended Industrial
Table 3. Input Characteristics
Parameters
Input Impedance
Input High Voltage
Input Low Voltage
Pull Range
PR
Symbol
Z_in
VIH
VIL
Min.
–
70
–
Typ.
100
–
–
Max.
–
–
30
Unit
kΩ
%
%
Internal pull up to Vdd
Condition
Input Characteristics
–
OE Pin
Frequency Tuning Range – Voltage Control or I
2
C mode
±6.25, ±10, ±12.5, ±25, ±50, ±80,
±100, ±125, ±150, ±200, ±400,
±600, ±800, ±1200, ±1600,
±3200
90%
–
10
–
Positive
–
2
ppm
Voltage Control Characteristics
Upper Control Voltage
Lower Control Voltage
Control Voltage Input Impedance
Control Voltage Input Bandwidth
Frequency Change Polarity
Pull Range Linearity
Input Voltage Low
Input Voltage High
Output Voltage Low
Output Current High
Leakage in high impedance mode
Input Hysteresis
Input Capacitance
Rise Time
Fall Time
VIL
VIH
VOL
IOL
I_leak
V_hys
C_in
Tr
Tf
VC_U
VC_L
VC_z
VC_c
–
–
–
10
0.5
–
–
–
–
–
–
–
–
–
–
–
–
10%
–
–
–
0.3
–
0.4
–
24
0.4
0.3
3
120
60
75
Vdd
Vdd
MΩ
kHz
%
V
V
V
mA
µA
V
V
pF
ns
ns
ns
Vdd = 3.3V, 30% to 70%
Vdd = 2.5V, 30% to 70%
0.1 Vdd< VOUT < 0.9 Vdd
Vdd = 3.3V
Vdd = 2.5V
Contact
SiTime
for other input bandwidth options
I C Interface Characteristics, 1 MHz, 200 Ohm, 550 pF (Max I
2
C Bus Load)
–
0.7
–
21
5.5
0.2
0.2
–
–
30
40
Rev 0.60
Page 4 of 36
www.sitime.com
SiT5357
60 to 220 MHz,
±0.1
to
±0.25
ppm
Elite Platform™ Precision Super-TCXO
Table 4. Jitter & Phase Noise
Parameters
RMS Phase Jitter (random)
T_phj
–
Spurs
RMS Period Jitter
Peak Cycle-to-Cycle Jitter
1 Hz offset
10 Hz offset
100 Hz offset
1 kHz offset
10 kHz offset
100 kHz offset
1 MHz offset
5 MHz offset
T_jitt
T_jitt_cc
–
–
–
–
–
–
–
–
–
–
–
0.30
-94
2
10
-54
-82
-104
-126
-132
-135
-149
-155
–
–
–
–
Phase Noise
–
–
–
–
–
–
–
–
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
dBc/Hz
ps
dBc
ps
ps
Symbol
Min.
Typ.
Max.
Jitter
–
0.30
–
ps
Unit
PRELIMINARY
Condition
f = 98.304 MHz, Integration bandwidth = 12 kHz to 20
MHz
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20
MHz
f = 98.304 MHz, 12 kHz to 5 MHz offsets
f = 98.304 MHz per JESD65 standard
f = 98.304 MHz per JESD65 standard
f = 98.304 MHz, TCXO and DCTCXO modes, and
VCTCXO mode with ±6.25 ppm pull range
Table 5. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part.
Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Continuous Power Supply Voltage Range (Vdd)
Human Body Model (HBM) ESD Protection
Soldering Temperature (follow standard Pb-free
soldering guidelines)
Junction Temperature
[1]
Note:
1. Exceeding this temperature for an extended period of time may damage the device.
"USB Development Encyclopedia (4th Edition)" introduces the knowledge and engineering examples about the working mode of Universal Serial Bus (USB), device hardware and software programming, etc. The ...
Source: Leifeng.com
If one word is used to sum up China's artificial intelligence, it is "conflict."
Whether in industry, investment or academia, all their actions and processes revolve around conflic...
[i=s] This post was last edited by I Love Download on 2018-10-22 13:45 [/i] [align=left][b][font=等线Light][size=5][color=#000000] Evaluation of the use of peripheral units pwm and uart [/color][/size][...
In a distributed network, the uncertainty of network transmission delay leads to poor synchronization accuracy when triggered by network commands. At the same time, due to the dispersion of the locati...
[i=s] This post was last edited by fdsf on 2022-10-5 13:27[/i]Here are the pictures first.Where Z1 is the impedance of C1 and R1 in series, and Vdc is the DC component of the input signal Vin. I want ...
The low power consumption of electronic products often gives product designers a headache but they have to face it. The power consumption of a system with a single-chip microcomputer (MCU) as the co...[Details]
On March 6, Cai Yi, president of the Engineering Research Institute of Guoxuan High-tech, revealed in an interview with Bloomberg that "Guoxuan High-tech is seeking to increase the energy density of ...[Details]
Abstract: Powering the RF power amplifier in a handheld device has always been a difficult design, because on the one hand, the working efficiency of the RF power amplifier needs to be improved to...[Details]
High-performance, scalable e-mobility modules and other silicon carbide (SiC) semiconductors bring significant efficiency improvements to electric vehicle (EV) powertrains. Driven by national and g...[Details]
ATMEL's AVR microcontroller is an enhanced RISC microcontroller with built-in Flash. The Flash memory on the chip is attached to the user's product and can be programmed and reprogrammed at any time,...[Details]
Servo motor, also known as servo motor, is mainly composed of housing, circuit board, motor, reduction gear and potentiometer. Servo is mainly suitable for control systems that need to change angle...[Details]
Aiming at the problem that the field tester of the traditional air-to-air missile launcher cannot communicate directly with the aircraft cockpit, a field tester with a wireless module is designed. Th...[Details]
What benefits can Hon Hai bring by creating high-end packaging and testing projects? According to previous reports, on April 15, Foxconn Technology Group, a subsidiary of Hon Hai, and Qingdao West C...[Details]
In the 5G era, the old problem of whether to choose 3G or 4G that troubled users when changing their phones around 2013-2014 has reappeared: when we change our phones, should we continue to choose th...[Details]
On the last day of 2019, the long-awaited One UI 2.0 (based on Android 10) was finally pushed to the Samsung S10 series phones sold in China, bringing N new features including dark mode, new ico...[Details]
Channel 0 is connected to the microcontroller power supply, and channel 1 is connected to the ground.
Source program: 3 files in total:
LCD1602display.h #ifndef _LCD1602DISPLAY_H_ #define ...[Details]
Previously, many smart mobile devices that support naked-eye 3D display technology, such as LG Optimus 3D and HTC EVO 3D, have made their debut. This undoubtedly means that while large-screen full-...[Details]
The United States deployed 431 megawatt-hours (MWh) of grid-connected energy storage in 2017, and deployment is expected to exceed 1,200 MWh this year.
The U.S. energy storage mark...[Details]
1 Introduction
Developing clean energy has become one of the core strategies for countries around the world to cope with the financial crisis and economic recession. Since electric vehicles ...[Details]
Recently,
WPG Holdings (hereinafter referred to as WPG),
a leading international semiconductor component distributor dedicated to the Asia-Pacific market
, announced that its subsi...[Details]