EEWORLDEEWORLDEEWORLD

Part Number

Search

C1206COG500-5R6DSNP

Description
Ceramic Capacitor, Multilayer, Ceramic, 50V, 8.9286% +Tol, 8.9286% -Tol, C0G, -/+30ppm/Cel TC, 0.0000056uF, 1206,
CategoryPassive components    capacitor   
File Size1022KB,14 Pages
ManufacturerVENKEL LTD
Environmental Compliance
Download Datasheet Parametric View All

C1206COG500-5R6DSNP Overview

Ceramic Capacitor, Multilayer, Ceramic, 50V, 8.9286% +Tol, 8.9286% -Tol, C0G, -/+30ppm/Cel TC, 0.0000056uF, 1206,

C1206COG500-5R6DSNP Parametric

Parameter NameAttribute value
Is it Rohs certified?conform to
Objectid893953299
package instruction, 1206
Reach Compliance Codecompliant
ECCN codeEAR99
capacitance0.0000056 µF
Capacitor typeCERAMIC CAPACITOR
dielectric materialsCERAMIC
high1.778 mm
JESD-609 codee3
length3.2 mm
multi-layerYes
negative tolerance8.9286%
Number of terminals2
Maximum operating temperature125 °C
Minimum operating temperature-55 °C
Package formSMT
method of packingTR, 7 Inch
positive tolerance8.9286%
Rated (DC) voltage (URdc)50 V
seriesC
size code1206
Temperature characteristic codeC0G
Temperature Coefficient30ppm/Cel ppm/°C
Terminal surfaceMatte Tin (Sn) - with Nickel (Ni) barrier
width1.6 mm
Ceramic Chip Capacitors
Multilayer chip capacitors have a low residual inductance, an excellent frequency
response and minimal stray capacitance since there are no leads. These characteristics
enable design to be very close to the theoretical values of the capacitors.
NP0/C0g:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
25°C
50°C
75°C
100°C
125°C
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
-55°C to +125°C
0 ±30PPM/°C
0 ±30PPM/°C
0.1% MAX.
>1000 ohms F or 100 G ohms, whichever is less at 25°C, VDCW.
(The IR at 125°C is 10% of the value at 25°C)
None
>2.5 times VDCW
1MHz ± 100KHz at 1.0 ± 0.2 Vrms
100 pF, 25°C
1KHz ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
B,C,D,F,G,J,K
-55°C to +125°C
0 ±15%∆°C MAX.
X7R not applicable
For 50 volts and 100 volts: 2.5% MAX.;
For 25 Volts 3.5 %( 0201, 0402, 0603, sizes
If 7% Max, for Values
0.33uF) for 16 Volts: 3.5% Max (except 0402
0.33uF & 0603
0.15uF DF is 5% Max)
For 10 Volts: 5% Max
For 6.3 Volts: 10% Max
For Values
10uF For all voltage offerings, the DF is 10% Max
>1000 ohms F or 100 G ohms, whichever is less at 25°C, VDCW.
(The IR at 125°C is 10% of the value at 25°C)
2.5% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
J,K,M
-55°C to +85°C
0 ±15%∆°C MAX.
X5R not applicable
For 50 Volts and 100 Volts 2.5% Max
For 25 Volts: 3.5% Max (0201, 0402, 0603,
0.33uF DF is 7% Max)
For 16 Volts: 3.5% Max (except 0402
0.33uF & 0603
0.15uF DF is
5% Max)
For 10 Volts 5.0% Max; For 4.0 Volts and 6.3Volts: 10% Max
For values
10uF the D.F. is 10% Max.
>1000 ohms F or 100 G ohms, whichever is less
at 25°C, VDCW. (10,000 ohms at 125°C)
2.5% per decade hour, typical
>2.5 times VDCW
1KHZ ± 100Hz at 1.0 ± 0.2 Vrms > 100 pF, 25°C
K,M
+10°C to +85°C
+22% - 56%∆°C MAX.
4.0% MAX.
>100 ohms F or 10 G ohms, whichever is less at 25°C, VDCW.
5% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 0.5 ± 0.1 Vrms, 25°C
M,Z
-30°C to +85°C
+22% - 82%∆°C MAX.
For 25 volts and 50 volts: 5% MAX.;
For 16 volts: 7% MAX.; For 10 volts: 9% MAX.;
For 6.3 volts: 11% MAX.
For higher Cap values > 10µF, the D.F. is 20% MAX.
>100 ohms F or 10 G ohms, whichever is less at 25°C, VDCW.
7% per decade hour, typical
>2.5 times VDCW
1KHz ± 100Hz at 1.0 ± 0.2 Vrms, 25°C
M,Z
X7R:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
INSULATION RESISTANCE:
25°C
50°C
75°C
100°C
125°C
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
TEMPERATURE VOLTAGE COEFFICIENT:
DISSIPATION FACTOR:
X5R:
15%
10%
5%
0%
-5%
-10%
-15%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
INSULATION RESISTANCE:
25°C
50°C
75°C
100°C
125°C
Z5U:
20%
0%
-20%
-40%
-60%
-80%
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
DISSIPATION FACTOR:
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
CAPACITANCE TOLERANCE:
OPERATING TEMPERATURE RANGE:
TEMPERATURE COEFFICIENT:
DISSIPATION FACTOR:
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
-55°C
-25°C
0°C
25°C
50°C
75°C
100°C
125°C
Y5V:
40%
20%
0%
-20%
-40%
-60%
-80%
-100%
-55°C
-25°C
0°C
SPECIFICATIONS:
Typical Capacitance Change vs. Temperature
25°C
50°C
75°C
100°C
125°C
INSULATION RESISTANCE:
AGEING:
WITHSTANDING VOLTAGE:
TEST PARAMETERS:
*
CAPACITANCE TOLERANCE:
5
1KHz ± 100Hz at 1.0 ± 0.2 Vrms
<
10uF (10 V min.)
1KHz ± 100Hz at 0.5 ± 0.1 Vrms
<
10uF (6.3V max.)
120Hz ± 24Hz at 0.5 ± 0.1 Vrms
10uF
All components in this section are RoHS compliant per the EU directives and definitions.
*
Test parameters for High Value Caps - X7R, X5R and Y5V:
Let’s make a prediction: 5G construction will accelerate at the end of the year, so will there be a wave of demand?
In the first half of this year, the three major operators all slowed down their 5G construction, but after entering the second half of the year, the operators all stated that they would maintain their...
他们逼我做卧底 RF/Wirelessly
Using NT33510 display screen, change the digital content on the display screen through the matrix keyboard
[size=14px]I want to implement a function like this: My LCD currently displays: Happy New Year! 2018! [/size] [size=14px]I want to change 2018 to 2019 through the matrix keyboard. The process is to fi...
xindi MCU
Does anyone know what the elements in the timing report in Quartus mean?
I would like to ask if anyone knows what the red circled element in the timing report in Quartus in the figure below means, and where does this type come from?...
sunboy25 FPGA/CPLD
[i.MX6UL Development] The kernel and uboot source code have been changed. How to modify Yocto?
i.MX6UL/i.MX6ULL Development FAQBased on Mir Electronics i.MX6UL/i.MX6ULL products2.1 kernel, uboot source code has changed, how to modify Yocto?Answer: When you modify the kernel or u boot and then b...
blingbling111 ARM Technology
MicroPython version 1.16 released
[i=s]This post was last edited by dcexpert on 2021-6-19 12:28[/i]MicroPython 1.16 was released today. Details will be released tomorrow (see the 4th floor).https://github.com/micropython/micropython/r...
dcexpert MicroPython Open Source section
[NUCLEO-L552ZE review] + Development environment construction
[i=s]This post was last edited by dql2016 on 2020-12-20 16:03[/i]As the saying goes, "If you want to do your work well, you must first sharpen your tools." It's almost 1202, and the code editing funct...
dql2016 stm32/stm8

EEWorld
subscription
account

EEWorld
service
account

Automotive
development
circle

Datasheet   0 1 2 3 4 5 6 7 8 9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Room 1530, 15th Floor, Building B, No. 18 Zhongguancun Street, Haidian District, Beijing Telephone: (010) 82350740 Postal Code: 100190
Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号