1 – 110 MHz, -55 to 125°C, Endura™ Series Oscillator
Features
◼
◼
Applications
◼
◼
◼
◼
◼
◼
◼
◼
◼
◼
◼
◼
◼
Best acceleration sensitivity of 0.1 ppb/g
Any frequencies between 1 MHz and 110 MHz accurate to
6 decimal places
Extended temperature range (-55°C to 125°C)
Excellent total frequency stability as low as ±20 ppm
Supply voltage of 1.8V or 2.25V to 3.63V
Low power consumption of 3.8 mA typical at 1.8V
Standby mode for longer battery life
LVCMOS/LVTTL compatible output
AEC-Q100 qualified
Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5,
5.0 x 3.2, 7.0 x 5.0 mm x mm
RoHS and REACH compliant, Pb-free, Halogen-free and
Antimony-free
Contact SiTime
for up-screening and LAT programs
Avionics systems
Field communication systems
Telemetry applications
Electrical Characteristics
Table 1. Electrical Characteristics
[1,2]
All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise sta ted.
Typical values are at 25°C and nominal supply voltage.
Parameters
Symbol
Min.
Typ.
–
–
–
–
–
–
–
–
–
–
Max.
Unit
Condition
Frequency Range
Output Frequency Range
f
1
110
MHz
Refer to Tables 13 to 15 for a
list supported frequencies
Frequency Stability and Aging
Frequency Stability
F_stab
-20
-25
-30
-50
+20
+25
+30
+50
ppm
ppm
ppm
ppm
Inclusive of Initial tolerance at 25°C, 1st year aging at 25°C,
and variations over operating temperature, rated power
supply voltage and load (15 pF ± 10%)
Operating Temperature Range
Operating Temperature
Range (ambient)
T_use
-40
-40
-40
-55
–
+85
+105
+125
+125
°C
°C
°C
°C
AEC-Q100 Grade 3
AEC-Q100 Grade 2
AEC-Q100 Grade 1
Extended cold AEC-Q100 Grade1
Rugged Characteristics
Acceleration (g) sensitivity,
Gamma Vector
F_g
0.1
ppb/g
Low sensitivity grade; total gamma over 3 axes; 15 Hz to 2 kHz;
MIL-PRF-55310, computed per section 4.8.18.3.1
Supply Voltage and Current Consumption
Supply Voltage
Vdd
1.62
2.25
Current Consumption
Idd
–
–
OE Disable Current
I_od
–
–
Standby Current
I_std
–
–
–
1.8
–
4.0
3.8
–
–
2.6
1.4
0.6
1.98
3.63
4.8
4.5
4.5
4.3
–
–
–
V
V
mA
mA
mA
mA
A
A
A
All voltages between 2.25V and 3.63V including 2.5V, 2.8V, 3.0V
and 3.3V are supported
No load condition, f = 20 MHz, Vdd = 2.25V to 3.63V
No load condition, f = 20 MHz, Vdd = 1.8V
Vdd = 2.5V to 3.3V, OE = Low, Output in high Z state
Vdd = 1.8V, OE = Low, Output in high Z state
Vdd = 2.8V to 3.3V,
ST
= Low, Output is weakly pulled down
Vdd = 2.5V,
ST
= Low, Output is weakly pulled down
Vdd = 1.8V,
ST
= Low, Output is weakly pulled down
Rev 1.00
July 24, 2020
www.sitime.com
SiT8944B
1 – 110 MHz, -55 to 125°C, Endura™ Series Oscillator
Table 1. Electrical Characteristics
[1,2]
(continued)
Parameters
Duty Cycle
Rise/Fall Time
Symbol
DC
Tr, Tf
Min.
45
–
–
Output High Voltage
VOH
90%
Typ.
–
1.5
1.3
–
Max.
55
3
2.5
–
Unit
%
ns
ns
Vdd
All Vdd levels
Vdd = 2.25V - 3.63V, 20% - 80%
Vdd = 1.8V, 20% - 80%
IOH = -4 mA (Vdd = 3.0V or 3.3V)
IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOH = -2 mA (Vdd = 1.8V)
IOL = 4 mA (Vdd = 3.0V or 3.3V)
IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V)
IOL = 2 mA (Vdd = 1.8V)
Pin 1, OE or
ST
Pin 1, OE or
ST
Pin 1, OE logic high or logic low, or
ST
logic high
Pin 1,
ST
logic low
Condition
LVCMOS Output Characteristics
Output Low Voltage
VOL
–
–
10%
Vdd
Input High Voltage
Input Low Voltage
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
2
–
–
100
–
Input Characteristics
–
Vdd
30%
–
–
Vdd
k
M
Startup and Resume Timing
Startup Time
Enable/Disable Time
Resume Time
T_start
T_oe
T_resume
–
–
–
–
–
–
5.5
130
5
Jitter
RMS Period Jitter
T_jitt
–
–
RMS Phase Jitter (random)
T_phj
–
–
1.6
1.9
0.5
1.3
2.5
3.0
–
–
ps
ps
ps
ps
f = 75 MHz, 2.25V to 3.63V
f = 75 MHz, 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz
ms
ns
ms
Measured from the time Vdd reaches its rated minimum value
f = 110 MHz. For other frequencies, T_oe = 100 ns + 3 * cycles
Measured from the time
ST
pin crosses 50% threshold
Notes:
1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.
2. The typical value of any parameter in the Electrical Characteristic table is specified for the nominal value of the highest voltage option for that parameter
and at 25°C temperature.
Table 2. Pin Description
Pin
Symbol
Output Enable
1
Standby
No Connect
2
3
4
Notes:
3. In OE or
ST
mode, a pull-up resistor of 10 kΩ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
4. A capacitor of value 0.1 µF or higher between Vdd and GND is required.
GND
OUT
VDD
Power
Output
Power
Functionality
H
[3]
: specified frequency output
L: output is high impedance. Only output driver is disabled.
H
[3]
: specified frequency output
L: output is low (weak pull down). Device goes to sleep mode.
Supply current reduces to I_std.
Any voltage between 0 and Vdd or Open
[3]
: Specified frequency
output. Pin 1 has no function.
Electrical ground
[4]
Oscillator output
Power supply voltage
[4]
Top View
OE/ST/NC
1
4
VDD
OE/
ST
/NC
GND
2
3
OUT
Figure 1. Pin Assignments
Rev 1.00
Page 2 of 15
www.sitime.com
SiT8944B
1 – 110 MHz, -55 to 125°C, Endura™ Series Oscillator
Table 3. Absolute Maximum Limits
Attempted operation outside the absolute maximum ratings may cause permanent damage to the part.
Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.
Parameter
Storage Temperature
Vdd
Electrostatic Discharge
Soldering Temperature (follow standard Pb free soldering guidelines)
Junction Temperature
[5]
Note:
5. Exceeding this temperature for extended period of time may damage the device.
Min.
-65
-0.5
–
–
–
Max.
150
4
2000
260
150
Unit
°C
V
V
°C
°C
Table 4. Thermal Consideration
[6]
Package
7050
5032
3225
2520
2016
JA, 4 Layer Board
(°C/W)
142
97
109
117
152
JA, 2 Layer Board
(°C/W)
273
199
212
222
252
JC, Bottom
(°C/W)
30
24
27
26
36
Note:
6. Refer to JESD51 for
JA
and
JC
definitions, and reference layout used to determine the
JA
and
JC
values in the above table.
Table 5. Maximum Operating Junction Temperature
[7]
Max Operating Temperature (ambient)
85°C
105°C
125°C
Maximum Operating Junction Temperature
95°C
115°C
135°C
Note:
7. Datasheet specifications are not guaranteed if junction temperature exceeds the maximum operating junction temperature.
Table 6. Environmental Compliance
Parameter
Mechanical Shock
Mechanical Vibration
Temperature Cycle
Solderability
Moisture Sensitivity Level
Condition/Test Method
MIL-STD-883F, Method 2002
MIL-STD-883F, Method 2007
JESD22, Method A104
MIL-STD-883F, Method 2003
MSL1 @ 260°C
Rev 1.00
Page 3 of 15
www.sitime.com
SiT8944B
1 – 110 MHz, -55 to 125°C, Endura™ Series Oscillator
Test Circuit and Waveform
Vdd
Vout
Test
Point
tr
4
Power
Supply
0.1µF
3
tf
80% Vdd
1
2
15pF
(including probe
and fixture
capacitance)
50%
20% Vdd
High Pulse
(TH)
Period
Low Pulse
(TL)
Vdd
OE/NC Function
1k
Figure 2. Test Circuit
[8]
Note:
8. Duty Cycle is computed as Duty Cycle = TH/Period.
Figure 3. Waveform
[8]
Timing Diagrams
90% Vdd
Vdd
Vdd
50% Vdd
Pin 4 Voltage
T_start
No Glitch
during start up
ST Voltage
T_resume
CLK Output
HZ
CLK Output
HZ
T_start: Time to start from power-off
T_resume: Time to resume from ST
Figure 4. Startup Timing (OE/
ST
Mode)
[9]
Vdd
50% Vdd
T_oe
OE Voltage
Figure 5. Standby Resume Timing (
ST
Mode Only)
Vdd
OE Voltage
50% Vdd
T_oe
CLK Output
HZ
CLK Output
HZ
T_oe: Time to re-enable the clock output
T_oe: Time to put the output in High Z mode
Figure 6. OE Enable Timing (OE Mode Only)
Note:
9. SiT8944 has “no runt” pulses and “no glitch” output during startup or resume.
Figure 7. OE Disable Timing (OE Mode Only)
Rev 1.00
Page 4 of 15
www.sitime.com
SiT8944B
1 – 110 MHz, -55 to 125°C, Endura™ Series Oscillator
[align=center] [b][color=#5E7384]This content is originally created by EEWORLD forum user [size=3]music_586[/size]. If you need to reprint or use it for commercial purposes, you must obtain the author...
[i=s] This post was last edited by sigma on 2019-4-19 11:20 [/i] [align=left][font=微软雅黑, "][size=14px]I'll just make a fool of myself here~ Due to my limited level and resources at hand, and my poor p...
Comprehensive testing of the static and dynamic parameters of the device is very important for the subsequent circuit design of the charger or other functional modules. The B150xA series static parame...
1. If the actual flow rate of the channel required by the peripheral is very close to or equal to the maximum flow rate of the channel, local data loss may occur. How can we solve it? (1) Increase the...
On March 29, 2016, the China International Solar Power Application Exhibition, including the "China Photovoltaic Four New Exhibitions" and the "China Solar Thermal Four New Exhibitions", opened gra...[Details]
The new AVR series (for example, ATMEGA168, etc.) uses an enhanced watchdog timer. Compared with the original watchdog, in addition to the same reset function, it also adds an interrupt function when ...[Details]
summary
In today's increasingly competitive global market, efficient industrial production capacity often depends on the speed, accuracy and reliability of each factory automation system. Even in s...[Details]
Practical experience A When I first started reading the book, I connected the wires according to the circuit diagram in the book and then powered on the circuit for debugging, but it was alw...[Details]
Today we will talk about a question that everyone is curious about, why computers are getting slower and slower. I believe everyone has experienced this. When you first bought a computer, it was like...[Details]
ON Semiconductor and Amphenol jointly explore the development trend of electric vehicles and promote green transformation November 22, 2023 – Mouser Electronics, an electronic components agent that...[Details]
1. This world is really crazy. It seems that some people start learning FPGA without even knowing what the principles of FPGA are . 2. DSP is a processor with unique instructions. Alt...[Details]
On April 14, Intel CEO Pat Gelsinger said in an interview after attending the White House Chip Summit that the global chip supply shortage that has hit the automotive industry and other manufacturers...[Details]
I think the delay is very harmful. It took me 4 hours to check the error.
Then I looked up information about timers for delay, button debouncing, and digital tube delay!
Independent key i...[Details]
According to TomsHardware, the US government's attempts to block Huawei have indeed had a serious impact on the company, but behind these practices is a strategy to prohibit China from obtaining key ...[Details]
In recent years, Enceladus has attracted much attention due to the fact that it contains an ocean system beneath its surface ice.
In a 17-year collaboration, researchers at Carnegie Mellon Uni...[Details]
SEMulator3D®
virtual manufacturing platform demonstrates next-generation semi
-
Damascene process flows and uses
new masks to study
process assumptions and challenges for back-...[Details]
As a person who has experienced it, I feel that I have a full responsibility to pass on my feelings from the bottom of my heart to the younger generation, "the pursuit of excellence and the deep sigh...[Details]
Samsung Electronics released a report revealing that its sales of ultra-large TVs have seen significant growth. In the first three quarters of this year, sales of TVs 80 inches and above climbed 15...[Details]