Ordering Information .................................................................................................................................................................... 2
User Programming Interface ..................................................................................................................................... 18
Start-up output frequency and signaling types ........................................................................................................... 18
Any-frequency function ............................................................................................................................................. 19
C/SPI Control Registers...................................................................................................................................................... 28
9 I
Register Address: 0x00. DCO Frequency Control Least Significant Word (LSW) .................................................... 28
Register Address: 0x01. OE Control, DCO Frequency Control Most Significant Word (MSW) ................................. 29
Register Address: 0x02. DCO PULL RANGE CONTROL ........................................................................................ 29
Register Address: 0x03. Frac-N PLL Feedback Divider Integer Value and Frac-N PLL Feedback Divider Fraction
Value MSW ............................................................................................................................................................... 30
Register Address: 0x05. Forward Divider, Driver Control ......................................................................................... 30
Register Address: 0x06. Driver Divider, Driver Control ............................................................................................. 31
2
C Operation ........................................................................................................................................................................ 32
10 I
I
2
C protocol ............................................................................................................................................................... 32
I
2
C Timing Specification ............................................................................................................................................ 35
I
2
C Device Address Modes ....................................................................................................................................... 36
Dimensions and Patterns ........................................................................................................................................................... 43
Additional Information ................................................................................................................................................................ 44
Revision History ......................................................................................................................................................................... 45
Rev 1.01
Page 3 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
1 Electrical Characteristics
All Min and Max limits in the Electrical Characteristics tables are specified over temperature and rated operating voltage with
standard output terminations shown in the termination diagrams. Typical values are at 25°C and nominal supply voltage.
Table 1. Electrical Characteristics – Common to LVPECL, LVDS and HCSL
Parameter
Output Frequency Range
Symbol
f
Min.
1
Typ.
–
–
–
–
–
±1
–
–
–
Max.
340
Unit
MHz
Condition
Factory or user programmable, accurate to 6 decimal places
Frequency Range
Frequency Stability
Frequency Stability
F_stab
-10
-20
-25
-50
First Year Aging
F_1y
–
+10
+20
+25
+50
–
ppm
ppm
ppm
ppm
ppm
°C
°C
°C
1
st
-year aging at 25°C
Inclusive of initial tolerance, operating temperature, rated
power supply voltage and load variations.
Temperature Range
Operating Temperature Range
T_use
-20
-40
-40
+70
+85
+105
Supply Voltage
Supply Voltage
Vdd
2.97
2.7
2.52
2.25
3.3
3.0
2.8
2.5
–
–
100
–
–
–
3.63
3.3
3.08
2.75
–
30%
–
V
V
V
V
Extended Commercial
Industrial
Extended Industrial. Available only for I
2
C operation, not SPI.
Input Characteristics – OE Pin
Input Voltage High
Input Voltage Low
Input Pull-up Impedance
VIH
VIL
Z_in
70%
–
–
Vdd
Vdd
kΩ
OE pin
OE pin
OE pin, logic high or logic low
Output Characteristics
Duty Cycle
DC
45
–
–
55
%
Startup and Output Enable/Disable Timing
Start-up Time
Output Enable/Disable Time –
Hardware control via OE pin
Output Enable/Disable Time –
Software control via I
2
C/SPI
T_start
T_oe_hw
3.0
3.8
ms
µs
Measured from the time Vdd reaches its rated minimum value
Measured from the time OE pin reaches rated VIH and VIL to
the time clock pins reach 90% of swing and high-Z.
See
Figure 9
and
Figure 10
Measured from the time the last byte of command is
transmitted via I
2
C/SPI (reg1) to the time clock pins reach 90%
of swing and high-Z. See
Figure 30
and
Figure 31
T_oe_sw
–
–
6.5
µs
Rev 1.01
Page 4 of 45
www.sitime.com
SiT3521
1 to 340 MHz Elite Platform I2C/SPI Programmable Oscillator
Table 2. Electrical Characteristics – LVPECL Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Maximum Output Current
Idd
I_OE
I_leak
I_driver
–
–
–
–
–
–
0.15
–
89
58
–
32
mA
mA
A
mA
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Maximum average current drawn from OUT+ or OUT-
Output Characteristics
Output High Voltage
Output Low Voltage
Output Differential Voltage Swing
Rise/Fall Time
VOH
VOL
V_Swing
Tr, Tf
Vdd - 1.1V
Vdd - 1.9V
1.2
–
–
–
1.6
225
Vdd - 0.7V
Vdd - 1.5V
2.0
290
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[3]
Note:
3. Measured according to JESD65B.
T_jitt
–
0.225
0.1
0.225
0.11
1
0.340
0.14
0.340
0.15
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
V
V
V
ps
See
Figure 5
See
Figure 5
See
Figure 6
20% to 80%, see
Figure 6
Table 3. Electrical Characteristics – LVDS Specific
Parameter
Symbol
Min.
Typ.
Max.
Unit
Condition
Current Consumption
Current Consumption
OE Disable Supply Current
Output Disable Leakage Current
Idd
I_OE
I_leak
–
–
–
–
–
0.15
80
61
–
mA
mA
A
Excluding Load Termination Current, Vdd = 3.3 V or 2.5 V
OE = Low
OE = Low
Output Characteristics
Differential Output Voltage
Delta VOD
Offset Voltage
Delta VOS
Rise/Fall Time
VOD
ΔVOD
VOS
ΔVOS
Tr, Tf
250
–
1.125
–
–
–
–
–
–
400
455
50
1.375
50
470
Jitter
RMS Phase Jitter (random) –
DCO Mode Only
T_phj
–
–
RMS Phase Jitter (random) –
Any-frequency Mode Only
T_phj
–
–
RMS Period Jitter
[4]
Note:
4. Measured according to JESD65B.
T_jitt
–
0.21
0.1
0.21
0.1
1
0.275
0.12
0.367
0.12
1.6
ps
ps
ps
ps
ps
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz,
all Vdd levels
f = 156.25, IEEE802.3-2005 10 GbE jitter mask integration
bandwidth = 1.875 MHz to 20 MHz, all Vdd levels
f = 100, 156.25 or 212.5 MHz, Vdd = 3.3 V or 2.5 V
mV
mV
V
mV
ps
f = 156.25MHz See
Figure 7
See
Figure 7
See
Figure 7
See
Figure 7
Measured with 2 pF capacitive loading to GND, 20% to 80%,
[align=left][color=rgb(51, 51, 51)][font="][size=17px]FPGA design process is the process of developing FPGA chips using EDA development software and programming tools. The typical FPGA development pro...
After more than a month of hard work, I finally completed the evaluation task of the RV86 development board. This evaluation focused on the development of the application layer, and did not do any und...
IntroductionDisplays, monitors and touchscreens are our interfaces to our digital lives—at home, at work and in the car. Display designers are continually upgrading their products with higher bandwidt...
Preface
This guide document is applicable to the development environment:
Windows development environment: Windows 7 64bit, Windows 10 64bit
Linux development environment: Ubuntu 14.04.3 64bit
Virtual...
[i=s]This post was last edited by a736015 on 2019-12-27 15:50[/i]IWR1443BOOST unboxing test: https://en.eeworld.com/bbs/thread-1101610-1-1.html
SDK and example download: https://en.eeworld.com/bbs/thr...
That was the story of me and the PIC32 that began in July 2009. Shortly after my book on how to program the 16-bit PIC24 microcontroller was published, I heard that a new 32-bit PIC32 microcontrolle...[Details]
The opening of the Science and Technology Innovation Board has given new "wings" to the rapid development of the domestic semiconductor industry. At the "Z Salon" - Industry and Investment held at th...[Details]
Ashutosh Sharma, Minister of the Department of Science and Technology (DST), India, recently announced that India will complete the installation and use of two supercomputers in a few days. As the fi...[Details]
The ultra-bright LED mini desk lamp has the characteristics of zero radiation, zero pollution, zero flicker, uniform lighting, stable brightness, low light decay, and closer to natural light. The u...[Details]
Jide announced that it has officially established a cooperative relationship with BAIC Motor, and will equip its BEIJING brand models under development with digital car keys, providing support to BAI...[Details]
This chapter will explain how to use the NASM assembly compiler.
First, download NASM: http://www.51hei.com/f/nasm.rar
Don't rush to run it... Maybe someone has already run it and found...[Details]
BrainChip has successfully taped out the AKD1500 machine learning chip on GlobalFoundries' 22nm FD-SOI process. This reference design is a key milestone and is part of validating BrainChip IP acros...[Details]
Ford Motor Co., Ltd. announced plans to invest more than $1.45 billion and add 3,000 jobs in two production plants in southeast Michigan to further consolidate its leadership in the truck and SUV mar...[Details]
Sweeping machines are familiar to modern people and are known as "a magic tool that frees your hands." When it comes to sweeping machines, most people probably think of the round sweeping machine fir...[Details]
In many devices such as radio communication, electronic measurement, automatic control, and electronic computers, the power supply must have a stable voltage. However, the fluctuation range of the ...[Details]
El Dorado Hills, CA – September 14, 2022 – Blaize® today announced a strategic partnership with Accton Technology, a leading provider of networking and communications solutions,
to bring edge A...[Details]
glibc printf ("hello Worldn"); // The process is the same as echo "hello World" /dev/console ... write(1,"hello Worldn",sizeof("hello Worldn")); svc ... linux SYSCALL_DEFINE3(write // fs...[Details]
Abstract: By analyzing the circuit model and energy consumption of wireless sensor networks, combined with the LEACH algorithm, a wireless sensor network routing algorithm based on minimum energy c...[Details]
With the widespread application of 3D facial recognition technology, face recognition is replacing fingerprint recognition as the mainstream of payment and security authentication. WeChat and Alipay ...[Details]
1. Principle of photoelectric encoder
According to the detection principle, encoders can be divided into optical, magnetic, inductive and capacitive types. According ...[Details]