................................. -10 °C to +55 °C
Resistance to Solder Heat............. ±5 %
Mechanical Travel ........ Length ±0.5 mm
Operating Force .............................60 gf
Stop Strength ......................... 5 kgf min.
Shaft Axial Force .................. 10 kgf min.
Shaft Wobble .. 2(2 x L/25) mm p-p max.
Soldering Condition
Manual ...........300 °C ±5 °C for 3 sec.
Wave ..............260 °C ±5 °C for 5 sec.
Wash .....................Not recommended
Mechanical Characteristics
Environmental Characteristics
Ro VE LEA
HS RS D
C ION FRE
OM S E
PL AR
IA E
NT
*
Electrical Characteristics
45 mm Length of Travel
Lever End Syle “A”
77.5
MAX.
(3.052)
65.0 ± 0.2
(2.559 ± .008)
13.0
MAX.
(.512)
Lever
Length
15.0
(.591)
20.0
(.787)
M3 2 PLCS.
45.0 ± 0.5
(1.772 ± .020)
6.0 ± 0.2
(.157 ± .008)
4.0 +0/-0.1
(.157 +0/-.004)
10.0 ± 0.3
(.394 ± .012)
R
0.3
(.012)
1.2 ± .05
(.047 ± .002)
L ± 0.5
(L ± .020)
38.7 ± 0.5
(1.524 ± .020)
HOLES
2 1 2' 1'
2.0
(.079)
6 PLCS.
5.0
6.8
(.197)
(.268)
5.0
(.197)
5.0
(.197)
12.5
(.492)
1.8
3'
(.071)
2 PLCS.
8.0
(.315)
20.0
(.787)
30.0
(1.181)
3
2.3 ± 0.2
(.091 ± .008)
3.7 ± 0.2
(.146 ± .008)
5.4 ± 0.2
(.213 ± .008)
0.5
(.020)
0.6
(.024)
Standard Resistance Table
Resistance
(Ohms)
1,000
2,000
5,000
10,000
20,000
50,000
100,000
200,000
500,000
1,000,000
Resistance
Code
102
202
502
103
203
503
104
204
504
105
How To Order
PTS 45 - 0 2 L - 103 B2
*RoHS Directive 2002/95/EC Jan. 27, 2003 including annex and RoHS Recast 2011/65/EU June 8, 2011.
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual
device performance may vary over time.
Users should verify actual device performance in their specific applications.
Model Number
Designator
PTS = High Grade Slide
Potentiometer
Length of Travel
45 = 45 mm
60 = 60 mm
01 = 100 mm
Lever End Style/Length
0 = Lever End Style “A” / 15 mm
1 = Lever End Style “T” / 8.2 mm
2 = Lever End Style “A” / 20 mm
No. of Gangs
1 = Single Gang
2 = Dual Gang
Mounting Type
L = Solder Lugs
P = PC Pins
Resistance Code
(See Standard Resistance Table)
Resistance Taper (See Taper Charts)
Taper Series followed by Curve Number
Applications
n
Professional mixing consoles
n
Professional outboard gear
PTS Series High Grade Slide Potentiometer
Product Dimensions
Tapers
A Series Tapers
100
60 mm Length of Travel
Lever End Style “A”
92.5
MAX.
(3.642)
80.0
±
0.2
(3.150
±
.008)
90
Output Voltage across Terminals 1-2
X 100 (%)
Input Voltage across Terminals 1-3
13.0
MAX.
(.512)
Lever
Length
15.0
(.591)
20.0
(.787)
80
70
60
50
40
30
20
10
0
10
20
30
(20
(3
0A
);A
6
M3 2 PLCS.
60.0
±
0.5
(2.362
±
.020)
6.0
±
0.2
(.157
±
.008)
4.0 +0/-0.1
(.157 +0/-.004)
10.0
±
0.3
(.394
±
.012)
DIMENSIONS:
MM
(INCHES)
1.2
±
.05
(.047
±
.002)
(25
3
A);
A5
A
A);
4
A);A
(15
A2
(10A);
(05
1
A);A
0.3
R
(.012)
40
50
60
70
80
90
100
Terminal 1
Rotational Travel (%)
Terminal 3
B Series Tapers
100
(4B
Output Voltage across Terminals 1-2
X 100 (%)
Input Voltage across Terminals 1-3
);B
38.7
±
0.5
(1.524
±
.020)
(3B
70
60
50
40
30
20
10
0
10
20
30
40
50
60
2.0
2 1 2' 1'
HOLES
(.079)
6 PLCS.
5.0
(.197)
5.0
(.197)
5.0
(.197)
20.0
(.787)
1.8
(.071)
2 PLCS.
6.8
(.268)
8.0
(.315)
27.5
(1.083)
37.5
(1.476)
3'
3
2.3
±
0.2
(.091
±
.008)
3.7
±
0.2
(.146
±
.008)
5.4
±
0.2
2
(.213
±
.008)
R1 1
3
0.5
(.020)
0.6
(.024)
70
(1
B
);B
1
80
3
(2
L
±
0.5
(L
±
.020)
);B5
(5B
);B
4
B)
;B
2
90
80
90
100
Terminal 1
Rotational Travel (%)
Terminal 3
Schematics
Output Voltage across Terminals 1-2
X 100 (%)
Input Voltage across Terminals 1-3
C Series Tapers
100
Single Gang
2
R1 1
3
Dual Gang
2
R1 1
R2 1'
2'
3
3'
90
80
70
60
50
40
30
20
10
(25
(3
0C
);C
6
C)
;C5
2
R1 1
R2 1'
3
3'
(1
(20
C
(15
0C
)
);C
4
(05
;C
2
C);C
1
C);
C3
0
10
20
30
40
50
60
70
80
90
100
Terminal 1
Rotational Travel (%)
Terminal 3
Specifications are subject to change without notice.
2'
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
PTS Series High Grade Slide Potentiometer
Product Dimensions
100 mm Length of Travel
Lever End Style “A”
132.5
MAX.
(5.217)
120.0
±
0.2
(4.724
±
.008)
13.0
MAX.
(.512)
M3 X 0.5 2 PLCS.
Lever
Length
15.0
(.591)
6.0
±
0.2
(.157
±
.008)
4.0 +0/-0.1
(.157 +0/-.004)
10.0
±
0.3
(.394
±
.012)
100.0 ± 1.0
(3.937 ± .039)
20.0
(.787)
1.2
±
.05
(.047
±
.002)
0.3
R
(.012)
L
±
0.5
(L
±
.020)
38.7
±
0.5
(1.524
±
.020)
HOLES
2 1 2' 1'
2.0
(.079)
6 PLCS.
5.0
(.197)
5.0
(.197)
5.0
(.197)
40.0
(1.575)
1.8
(.071)
2 PLCS.
6.8
(.268)
8.0
(.315)
47.5
(1.870)
57.5
(2.264)
3'
3
2.3
±
0.2
(.091
±
.008)
3.7
±
0.2
(.146
±
.008)
5.4
±
0.2
(.213
±
.008)
0.5
(.020)
0.5
(.020)
DIMENSIONS:
MM
(INCHES)
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
PTS Series High Grade Slide Potentiometer
Product Dimensions
45 mm Length of Travel
Lever End Style “T”
77.5
MAX.
(3.052)
65.0
±
0.2
(2.559
±
.008)
13.0
MAX.
(.512)
M3 X 0.5 2 PLCS.
45.0 ± 0.5
(1.772 ± .020)
2.0
(.079)
4.0
(.157)
18.5 +0/-0.1
(.728 +0/-.004)
14.5
(.571)
8.0
(.315)
8.2 ± 0.5
(.323 ± .020)
1.5
±
.05
(.059
±
.002)
1.2
±
.05
(.047
±
.002)
2.0
(.079)
DIA. 2 PLCS.
38.7
±
0.5
(1.524
±
.020)
HOLES
2 1 2' 1'
2.0
(.079)
6 PLCS.
5.0
6.8
(.197)
(.268)
5.0
(.197)
5.0
(.197)
12.5
(.492)
1.8
3'
(.071)
2 PLCS.
8.0
(.315)
20.0
(.787)
30.0
(1.181)
3
2.3
±
0.2
(.091
±
.008)
3.7
±
0.2
(.146
±
.008)
5.4
±
0.2
(.213
±
.008)
0.5
(.020)
0.6
(.024)
DIMENSIONS:
MM
(INCHES)
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
PTS Series High Grade Slide Potentiometer
Product Dimensions
60 mm Length of Travel
Lever End Style “T”
92.5
MAX.
(3.642)
80.0
±
0.2
(3.150
±
.008)
13.0
MAX.
(.512)
M3 X 0.5 2 PLCS.
60.0
±
0.5
(2.362
±
.020)
18.5 +0/-0.1
(.728 +0/-.004)
2.0
(.079)
4.0
(.157)
14.5
(.571)
8.0
(.315)
8.2 ± 0.5
(.323 ± .020)
1.5
±
.05
(.059
±
.002)
1.2
±
.05
(.047
±
.002)
2.0
(.079)
DIA. 2 PLCS.
38.7
±
0.5
(1.524
±
.020)
HOLES
2.0
2 1 2' 1'
(.079)
6 PLCS.
5.0
(.197)
5.0
(.197)
5.0
(.197)
20.0
(.787)
1.8
(.071)
2 PLCS.
6.8
(.268)
8.0
(.315)
27.5
(1.083)
37.5
(1.476)
3'
3
2.3
±
0.2
(.091
±
.008)
3.7
±
0.2
(.146
±
.008)
5.4
±
0.2
(.213
±
.008)
0.5
(.020)
0.5
(.020)
DIMENSIONS:
MM
(INCHES)
Specifications are subject to change without notice.
The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time.
Users should verify actual device performance in their specific applications.
The driver of DS1302 was completed before the holiday. The date and time can be read from DS1302 and written. But the date and time need to be adjusted by using a button. It took nearly a week to make...
1. bq34z100 current calibration problem:
1. In the current calibration section of the bq34z100EVM Wide Range Impedance Track Enabled Battery Fuel Gauge Solution manual, sentence 4: Connect and measure...
LZ is in the second year of graduate school. Although his major is electronics, the application is awkward. It is in the direction of electronic readout for large-scale particle detection. With the ec...
Because the op amp is powered by a single power supply, a bias voltage VCM1 of tens of mV must be added (why?). I see that the classic differential amplifier circuits are all grounded? Also, I used a ...
With the rapid growth of applications with higher data rates such as 5G, wireless systems are faced with the requirements of wider bandwidth and wider network coverage. Multi-antenna technologies, suc...
I am using the AX309 development board from Heijin and I am a beginner in FPGA. Today I simulated the serial port routine in their tutorial. First, I had a problem simulating a simple clock divider mo...
As the preferred data bus for current aerospace electronic equipment, the reliability of the 1553B bus cable network directly affects the normal operation of the entire system. Bus failures may even ...[Details]
introduction
As we all know, many scientific experiments are inseparable from electricity, and in these experiments, there are often special requirements for power-on time, voltage level, ...[Details]
At present, the Ethernet protocol has been widely used in various computer networks, such as office LANs, industrial control networks, the Internet, etc., and is still developing. Single chip microco...[Details]
First of all, let me talk about why we use 14-bit AD. When TEK first designed the first portable oscilloscope, the TDS1000 and 2000 series used a 5-inch screen with a vertical resolution of 240. At t...[Details]
At present, embedded processors based on ARM core have become the mainstream in the embedded system market. With the widespread application of ARM technology, the establishment of embedded operating ...[Details]
Use cnnt to count pulses, TMR1 to time the rising edge, TMR2 to time the falling edge, TMR1 is set as a 100MS timer, and TMR2 is set as a 40MS timer. The pulse period varies from 50HZ to 300...[Details]
Medical and health care is a major issue concerning the national economy and people's livelihood. The development of medical modernization is to enable the medical system to better serve patients a...[Details]
Among many circuit designs, TL431 is a controllable precision voltage regulator widely used in switching power supplies. And TL431 has a good reference voltage and operational amplifier, so it can re...[Details]
1. RIS Model
Last year, when I introduced the LeCroy oscilloscope family, I often said that LeCroy can provide 100MHz-100GHz oscilloscopes. Now I will say that LeCroy can provide 60MHz-100GHz ...[Details]
Apple's earliest VR glasses patent can be traced back to the first patent in 2009, which was positioned as an accessory for iPod. But what really exposed its ambition was the series of patents and ...[Details]
GPIO main functions ● Each bit of the port can be configured individually ● Selectable input mode: floating input and input with pull-up ● Selectable output modes: push-pull output and open-drain ...[Details]
Abstract: Simple level shifting circuit using a precision op amp tracks small DC voltage changes.
When we want to capture a low level, long duration signal riding on a much higher DC level, we nee...[Details]
1. Use shift operation Use left shift instruction and negation operation to realize the pipeline lamp from the first diode to the last diode #include reg52.h // 200 millisecond interval water light...[Details]
Audi uses NXP’s Trimension NCJ29Dx series of ultra-wideband (UWB) precision ranging ICs to enhance the smart, touchless digital key capabilities of its new premium electric platform (PPE)
...[Details]